
ON ADAPTIVITY AND RANDOMNESS

FOR STREAMING ALGORITHMS

A Thesis

Submitted to the Faculty

in partial fullfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by Manuel Stoeckl

Guarini School of Graduate and Advanced Studies

Dartmouth College

Hanover, New Hampshire

April 2024

Examining Committee

(chair) Amit Chakrabarti

Peter Winkler

Deeparnab Chakrabarty

Sepehr Assadi

F. Jon Kull, Ph.D.

Dean of the Guarini School of Graduate and Advanced Studies

Abstract

A streaming algorithm has a limited amount of memory and reads a long sequence (data stream)

of input elements, one by one, and computes an output depending on the input. Such algorithms

may be used in an online fashion, producing a sequence of intermediate outputs corresponding to

the prefixes of the data stream. Adversarially robust streaming algorithms are required to give

correct outputs with a desired probability even when the data stream is adaptively generated by

an adversary that can see all intermediate outputs of the algorithm. This thesis binds together

research on a variety of problems related to the adversarial setting and other models for streaming

algorithms.

• A toy problem in streaming called “Missing Item Finding” is studied in a variety of models, in-

cluding: classical, adversarially robust, white-box adversarially robust, pseudo-deterministic,

and deterministic streaming. Surprisingly, we find that for a wide range of problem param-

eters, adversarially robust algorithms for Missing Item Finding require access to a random

oracle to work efficiently, requiring exponentially more space otherwise.

• We find lower and upper bounds for adversarially robust algorithms using semi-streaming

space, which solve the task of maintaining an O(∆c)-vertex-coloring of a graph edge insertion

stream, for all constants c > 1. These give separations relative to classical and deterministic

streaming. We also give a deterministic multi-pass algorithm for (∆ + 1)-vertex-coloring.

• We obtain streaming algorithms for online edge coloring of graph edge insertion and vertex

insertion streams that use sublinear space in the O(∆)-color regime; our algorithms can handle

multi-graph streams, can be made deterministic, and give smooth space/color tradeoffs.

ii

Acknowledgements

This work is based on, and includes text, equations, and figures from:

• Chapter 3: [Sto23] and [CS23]

• Chapter 4: [CGS22] and [ACGS23]

• Chapter 5: [GS23]

• Chapter 2: all of the above

My coauthors in the above are Amit Chakrabarti, Prantar Ghosh, and Sepehr Assadi.

These works were supported by:

• NSF awards CCF-1907738 and CCF-2006589.

• (S. Assadi): NSF CAREER Grant CCF-2047061, Google Research gift, Fulcrum award from

Rutgers Research Council.

• (P. Ghosh) Grant 820931 to DIMACS from the Simons Foundation.

I would like to thank my advisor, Amit Chakrabarti, and my coauthors. I also wish to ac-

knowledge those with whom I have discussed the research leading to this thesis: Peter Winkler,

Deeparnab Chakrabarty, Hsien-Chih Chang, Sebastiaan Joosten, Maryam Neghabani, Hang Liao,

Ankita Sarkar, and Jonathan Conroy.

iii

Contents

1 Introduction 1

2 Definitions 7

2.1 Basic definitions and notation . 7

2.2 Streaming algorithms and models . 8

2.2.1 Types of randomness . 8

2.2.2 Setting and performance requirements . 10

2.2.3 Related work . 12

2.3 Common lemmas . 15

3 Streaming algorithms for Missing Item Finding 18

3.1 Introduction . 18

3.1.1 Results . 19

3.1.2 Related work . 26

3.1.3 Warm-up . 29

3.2 Classical randomized algorithms . 30

3.2.1 A sampling algorithm . 30

3.2.2 Using sparse recovery . 31

3.3 Random oracle space complexity, adversarial setting 35

3.3.1 Introducing AVOID . 35

3.3.2 Lower bound: reduction from AVOID . 38

3.3.3 Upper bound: the hidden list algorithm . 39

3.4 Zero-error model variant . 42

3.5 Deterministic space complexity . 46

3.5.1 Lower bound: an embedded instance of AVOID 46

3.5.2 Upper bound: filtering by coordinates . 49

3.5.3 Upper bound: using AVOID protocols to improve efficiency 51

3.6 Pseudo-deterministic lower bound . 55

iv

3.6.1 Definitions and parameters . 57

3.6.2 Proof by induction . 58

3.6.3 Calculating the lower bound . 63

3.7 Random seed space complexity, adversarial setting 66

3.7.1 Lower bound: a general reduction to the pseudo-deterministic case 66

3.7.2 Upper bound: hidden list of subsets . 70

3.8 White-box adversarial lower bound . 74

3.9 Classical lower bounds . 79

3.9.1 By reduction from deterministic . 79

3.9.2 By modified AVOID lower bound . 81

3.10 Random tape upper bound, adversarial setting . 84

3.10.1 Definitions and the random tree view . 86

3.10.2 Setting parameters and bounding space . 87

3.10.3 The error bound . 93

3.11 Random tape lower bound, adversarial setting . 96

3.11.1 The induction step . 98

3.11.2 Calculating the lower bound . 104

3.12 Conclusion . 110

4 Robust and multipass deterministic streaming algorithms for graph coloring 112

4.1 Introduction . 112

4.1.1 Results . 113

4.1.2 Related work . 117

4.2 Preliminaries . 119

4.3 Hardness of adversarially robust graph coloring . 121

4.3.1 The k-fold subset avoidance problem . 122

4.3.2 Reducing k-AVOID to graph coloring . 123

4.4 A robust random-seed algorithm . 127

4.5 A robust random-oracle algorithm . 131

4.5.1 High-level description and techniques . 131

4.5.2 The robust algorithm and its analysis . 134

4.6 A multipass deterministic algorithm . 139

4.6.1 High-level organization . 141

4.6.2 The logic of an epoch: extending a partial coloring 142

4.6.3 Detailed algorithm and proof of correctness 144

4.6.4 Space and pass complexity . 149

v

4.6.5 Extending to list coloring . 150

4.7 Slightly improved deterministic lower bound . 154

4.8 Conclusion . 157

5 Streaming algorithms for online edge coloring 159

5.1 Introduction . 159

5.1.1 Results . 161

5.1.2 Related work . 164

5.2 Preliminaries . 167

5.2.1 Notation . 167

5.2.2 Models . 167

5.3 Algorithm transformations/reductions . 168

5.3.1 From bipartite graphs to general graphs . 168

5.3.2 Color-space tradeoff . 172

5.4 Edge coloring on vertex arrival streams . 174

5.4.1 Randomized online algorithm for vertex arrivals 174

5.4.2 Deterministic online algorithm for vertex arrivals 177

5.5 Edge coloring on edge arrival streams . 187

5.5.1 W-streaming algorithm for edge arrivals . 187

5.5.2 Randomized online algorithm for edge arrivals 190

5.5.3 Deterministic online algorithm for edge arrivals 195

5.6 A lower bound for deterministic edge coloring . 206

5.7 Details of constructing random permutations . 211

5.8 Conclusion . 213

Bibliography 215

vi

List of Figures

3.1 Log-log plot of MIF space complexity bounds in the adversarial setting 23

3.2 Example input for Algorithm 3.2.1 . 30

3.3 Example input for Algorithm 3.2.2 . 32

3.4 Example input for Algorithm 3.3.1 . 39

3.5 Example behavior of Eq. 3.9 . 47

3.6 Example input for Algorithm 3.5.1 . 49

3.7 Example input for Algorithm 3.5.2 . 52

3.8 Example input for Algorithm 3.7.1 . 71

3.9 Example input for Algorithm 3.10.1 . 86

3.10 Example transcript evolution for random tape lower bound 100

5.1 Dependencies between results . 165

vii

List of Tables

3.1 Results for MissingItemFinding: details . 20

3.2 Results for MissingItemFinding: setting/requirements vs randomness type 21

4.1 Comparison of graph coloring results . 113

4.2 Space/color/pass tradeoffs for deterministic multi-pass streaming 114

5.1 Results for online streaming algorithms . 161

5.2 Results for W-streaming algorithms . 161

viii

List of Algorithms

3.1.1 A simple deterministic streaming algorithm for mif(n, ℓ) 29

3.2.1 A streaming algorithm for mif(n, ℓ) with error rate ≤ δ on any input stream 31

3.2.2 A random-seed streaming algorithm for mif(n, n− 1) with ≤ δ error 33

3.3.1 Adversarially robust, random oracle algorithm for mif(n, ℓ) with error ≤ δ 40

3.4.1 Extending a non-guessing algorithm B for mif(n, ℓ) to have zero error 44

3.5.1 A deterministic algorithm for mif(n, ℓ) . 50

3.5.2 A deterministic algorithm for mif(n, ℓ) . 53

3.6.1 The procedure to compute a set for Lemma 3.6.1 . 59

3.7.1 An adversarially robust, random-seed algorithm for mif(n, ℓ) with error ≤ δ 71

3.8.1 A white-box adversary for z-bit algorithms for mif(n, ℓ) 76

3.10.1Adversarially robust random tape algorithm for mif(n, ℓ) with error ≤ δ 88

3.11.1Adversary for a random tape mif(n, ℓ) algorithm, with parameter α ∈ (0, 1). 99

4.3.1 Protocol for avoid(
(
2K
2

)
, ⌊LK/4⌋, ⌊L/2⌋⌈K/2⌉) . 125

4.4.1 Randomness-efficient adversarially robust O(∆3)-coloring in semi-streaming space . . 129

4.5.1 Adversarially robust O(∆2.5)-coloring in semi-streaming space 135

4.6.1 Deterministic semi-streaming algorithm for (∆ + 1)-coloring 141

4.6.2 Partial coloring step for Algorithm 4.6.1 . 145

5.2.1 A greedy 2∆− 1 online edge-coloring algorithm using O(n∆) bits of space 169

5.3.1 Algorithm to partition general graph edges into bipartite graphs 171

5.3.2 Adapting an edge coloring algorithm A to trade colors for space, with parameter s . 173

5.4.1 Randomized algorithm for 5∆ edge coloring for one sided vertex arrival bipartite

streams . 175

5.4.2 Deterministic algorithm for O(∆) edge coloring for one sided vertex arrival bipartite

streams . 183

5.5.1 W-streaming algorithm for O(∆) edge coloring on edge-arrival stream given black-

box access to algorithm A for C∆ edge coloring on vertex-arrival stream 188

5.5.2 Storing free regions from a permutation . 191

5.5.3 Randomized algorithm for O(∆) edge coloring for simple graph edge arrival streams 192

ix

5.5.4 Partial coloring algorithm: (1/3)-partial O(∆) edge coloring for graph edge arrival

streams satisfying Property Z, plus reference counting 201

5.5.5 Inner algorithm: O(∆ log∆) edge coloring for graph edge arrival streams which have

certain substreams satisfying Property Z, plus reference counting 204

5.5.6 Deterministic algorithm for O(∆(log∆)2) edge coloring for multigraph edge arrival

streams . 205

5.8.1 Randomized algorithm for (2∆ − 1)-edge coloring in the one-sided vertex arrival

model, conjectured to use O(n log∆) space w.h.p. 214

5.8.2 Randomized algorithm for (2∆− 1)-edge coloring in the edge arrival model, conjec-

tured to use O(n
√
∆ log∆) space w.h.p. 214

x

Chapter 1

Introduction

Imagine that you and an opponent are playing a game, running for 2000 turns; in each turn, your

opponent tells you a number between 1 and 106, and you try to reply with a number between 1

and 106 that was not said by your opponent, on this or on any previous turn. You win if you

can do this on every turn, and lose if you ever reply with a number the opponent had said before.

Whether or not you can reliably win this game depends on what resources you have available.1 If

you could write down all the numbers that were stated, it would be easy to pick a new number

each turn. But if you cannot write anything down, how often you can win this game depends on

how much about your opponent’s sequence of numbers you can remember—and on what else you

have available.

A simple strategy for this game is to say a random number between 1 and 106 each turn; on one

hand, you don’t need to remember anything to do this; on the other, you are only guaranteed to

win the game a bit less than 1/8th of the time. You can win much more often, however, if you have

with you a piece of paper listing a few thousand randomly chosen numbers between 1 and 106, that

were chosen in advance, and which your opponent does not know. Then you just need to say the

first number in the list that the opponent has not said ; doing this requires just remembering what

the last number you said is, plus a few numbers from the remainder of the list that your opponent

managed to guess. As Chapter 3 will show, this strategy is close being optimal; and having a

random list of numbers is often necessary, if you do not want to keep track of a large amount of

information. Furthermore, if you want to win the game with certainty, there is a strategy in which

you don’t need to remember exactly which numbers your opponent said, but it still requires an

impractical amount of memory.

1And of course, on what resources the opponent has available; in any case, to be certain of victory you should use
a strategy that works against someone with perfect memory and infinite time, who already knows what your strategy
is.

1

Streaming perspective. Memory-limited strategies for the two player game we described (which

we call MissingItemFinding) can be studied through the framework of streaming algorithms. A

“streaming algorithm” is an algorithm that reads a sequence of values in order, operating on

one value at a time, and computes some value associated to the sequence. For many problems,

streaming algorithms exist which require much less computer memory than would be needed to

store the entire sequence (the “data stream”). Among many other uses, such algorithms have

historically been useful to compactly estimate properties2 of distributions from a large sequence of

samples. The study of streaming algorithms has been intertwined with the study of “sketches”,

summaries of sequences of data which satisfy an additional mergeability property [Cor23]. The

focus of research on streaming algorithms has changed several times over the past few decades:

for example, the constraints of tape drives have led to work on “multi-pass” streaming algorithms

that read a sequence of values multiple times; a wave of interest in big data has motivated work

on estimating graph properties, including in streaming; and the use of streaming algorithms in

interactive environments has motivated research in making more “robust” streaming algorithms.

A powerful tool for streaming algorithms is randomization. Letting streaming algorithms make

random decisions can significantly reduce the space required by the algorithm; however, this ran-

domization often comes at the cost of having an algorithm fail with some small probability. For

example, there is a randomized streaming algorithm using O(logm) space that with ≤ 1/poly(m)

error probability detects whether a sequence of m letters is a palindrome; but any deterministic

algorithm must store the first ⌊m/2⌋ letters.
We will devise and prove lower bounds for streaming algorithms in a number of models that

fall between plain “randomized” and “deterministic” streaming.

In this dissertation, we describe three main projects: we consider a toy problem under a vari-

ety of streaming model variants; study graph coloring in the adversarially robust and multi-pass

deterministic streaming models, and find streaming algorithms for online edge coloring. In more

detail:

Missing Item Finding. A recent paper [BJWY20] introduced the notion of an “adversarially

robust” streaming algorithm. In the usual “static” setting, a streaming algorithm is considered to

solve a problem with error ≤ δ if for all possible input streams, the algorithm produces a correct

output for the problem at the end of the stream, with probability ≥ 1 − δ over the randomness

of the algorithm. In the “adversarial setting”, an algorithm solves a problem with error ≤ δ if

it produces correct output at each point in the stream, with total error probability ≤ δ, when

the stream is produced by an adversary that chooses the next values based on the history of the

algorithm’s outputs. An algorithm is “adversarially robust” if it solves a problem in the adversarial

2For example, to estimate distribution quantiles, find the most common values, or calculate the moments of the
vector giving the frequencies of the elements in the stream.

2

setting; it is “classic” if it is randomized and solves a problem in the static setting. (More formal

definitions are given in Section 2.2.)

The adversarial setting is useful to model worst-case performance in scenarios where streaming

algorithms periodically report outputs, and the outputs may influence future inputs to the algo-

rithm. For example, if one connects a streaming algorithm to estimate which parts of a machine

need cleaning to a control that can clean them, it is possible that any initial biases of the streaming

algorithm (to, say, be insensitive to sensors at a few random locations), will be amplified over time

(moving dirt to locations the streaming algorithm cannot detect). There have been a number of

papers exploring problems in this model which we will detail in Chapter 2.

However, many aspects of adversarially robust streaming algorithms are not yet well understood.

For example, how large of a separation in the space complexity, for a given problem, between

randomized algorithms in the static and adversarial settings could there be? [KMNS21] gave a

rather complicated example for which algorithms in the adversarial setting use exponentially more

space than algorithms in the static setting, but we find that there is a much simpler one.

In the Missing Item Finding (mif) problem (see Problem 3.1.1), parameterized by integers

1 ≤ ℓ < n, one is given a stream considering of ℓ integers, a1, . . . , aℓ, which are not-necessarily-

distinct elements of {1, . . . , n}. The goal is, after receiving each integer, to output an integer in

{1, . . . , n} which was not part of the stream so far.

We find that:

• The space complexity of randomized algorithms in the static setting with error ≤ 1/poly(n)

is O(polylog n);

• The space complexity of randomized algorithms in the adversarial setting with error ≤
1/ poly(n) is between Ω(1 + ℓ2/n) and O((1 + ℓ2/n) polylog(n));

• The space complexity of deterministic algorithms in the static setting3 is Ω(ℓ/ log(n/ℓ)).

In particular, for ℓ = n/2, we obtain an exponential separation between the space complexity

of randomized algorithms in the classic and adversarial settings.

Our claim that randomized algorithms in the adversarial setting use O((1 + ℓ2/n) polylog(n))

space has a caveat: the only algorithm we have found that does this assumes access to a random

oracle (needs to be able to read from random string of length O(ℓ log n), at any time). Note that

ℓ log n is exponentially larger than O((1+ ℓ2/n) polylog(n)) when ℓ =
√
n. Having a random oracle

is not an unreasonable assumption under standard cryptographic assumptions (the existence of

one-way functions and hence of cryptographic pseudo-random generators). We investigate whether

or not this is necessary, and find that it is: when ℓ =
√
n, streaming algorithms for mif in the

3As the outputs of deterministic algorithms must always be correct and are perfectly predictable, there is no
different between static and adversarial settings for them.

3

adversarial setting, that do not have a random oracle, and can only use randomness in the usual

way (by flipping a fair random coin or hardware random generator) require nΩ(1) bits of space.

We also evaluate the space complexity of Missing Item Finding in a number of other models,

including:

• randomized algorithms in the white-box adversarial [ABJ+22] setting,

• randomized algorithms which are pseudo-deterministic [GGMW20],

• randomized algorithms in the adversarial setting, with the additional constraint that they

can only make random choices before starting to receive the stream.

Our full results here are described in Chapter 3.

Graph vertex coloring. A graph coloring is an assignment of colors to the vertices of a graph

so that no two adjacent vertices receive the same color. It is NP-hard to compute a graph coloring

for a general graph using a minimum number of colors. If a graph has maximum degree ∆, then

a greedy algorithm will efficiently find a coloring of it using at most ∆ + 1 colors. In fact, there

is a greedy algorithm for the harder task of (deg+1)-list coloring, wherein each vertex v has an

associated set of colors Lv of size deg(v) + 1, and one must assign to v a color from Lv. There are

also polynomial time algorithms to find a coloring of a graph using only ∆ colors, assuming there

is one.

One way to frame the graph coloring problem for streaming algorithms is as follows. Say as

input one is given a “graph edge insertion stream” – a sequence of edges in a graph over a fixed

and known set of vertices, with the promise that the maximum degree of any vertex will be ≤ ∆.

The objective is to output a coloring of the graph which is formed by the edges in the stream;

where colors are taken from a finite set. In the static setting, using “semi-streaming” space (that

is, O(n polylog(n)) bits of space, where n is the number of vertices), a line of work leading up to

[ACK19] proved that there exists a randomized streaming algorithm using ∆ + 1 colors.4

However, the algorithm of [ACK19] does not work in the adversarial setting: it will break when

faced with an adversary that periodically evaluates the algorithm to get a coloring of the graph

formed by the stream so far, and submits new edges between vertices that the algorithm gave the

same color to. We sought to determine the space complexity of adversarially robust algorithms for

graph coloring, and found:

• A space lower bound for any number of colors: for any constant c ≥ 1, when ∆ = Ω(log n)

and ∆ = O(n1/c), coloring with O(∆c) colors requires Ω(n∆1−c) space

4Later work by [AKM22] found a way to use only ∆ colors, if the graph encoded by the stream has a ∆-coloring.

4

• An algorithm which for any c ∈ [1, 2.5] uses O(∆c) colors and O(n∆(c−1)/1.5 polylog(n)) space,

with the caveat of requiring a random oracle.

• An algorithm which for any c ∈ [1, 3] uses O(∆c) colors and O(n∆(c−1)/2 polylog(n)) space,

and does not need a random oracle.

For deterministic graph coloring algorithms, [ACS22] proved a lower bound on the number of

colors that would be needed in the worst case, for any given amount of space. With light modifi-

cations to the paper (see Corollary 4.7.1), one finds that any algorithm using ≤ n/2 colors when

∆ = Ω((log n)2) needs Ω(n∆/ polylog(n)) bits of space. Implementing a naive greedy algorithm

in the streaming setting guarantees a (∆ + 1) coloring, using only O(n∆) bits of space, so their

result shows that deterministic algorithms cannot save very much space without using far too many

colors. In conjunction with our results, this implies a three-way separation between the number

of colors used by the best randomized classic, adversarially robust, and deterministic algorithms

using semi-streaming space.

[ACS22] also obtain a multi-pass deterministic algorithm in semi-streaming space for O(∆)

coloring using O(log∆) passes, leaving open whether a (∆+1) coloring algorithm using few passes

exists. We find that there is in fact a multi-pass, deterministic, semi-streaming (∆ + 1)-coloring

algorithm using O(log∆ log log∆) passes over the input, and that this generalizes to a specific

streaming form of the degree+1 list coloring problem.

Our full results here are described in Chapter 4.

Graph edge coloring. A somewhat less common problem than graph vertex coloring is graph

edge coloring. Here, instead of assigning colors to the vertices of a graph, one assigns colors to

the edges of a graph, so that no two edges incident on the same vertex have the same color. By

Vizing’s theorem [Viz65] on simple graphs of maximum degree ∆, this can be done using ∆ + 1

colors; while on multigraphs of maximum degree ∆, 3∆/2 colors suffice. As a vertex of degree ∆

will necessarily have ∆ differently colored edges next to it, the optimum number of colors is never

much lower than these upper bounds.

One active direction of research is to find “online” algorithms for edge coloring, using as few

colors as possible. If the edges of a graph are provided in some order, an online edge coloring

algorithm will process and assign a color to each edge before seeing any of the following edges;

colors are never changed once assigned. [BMN92] find that, when the maximum degree of the

graph is small (∆ = O(
√
log n)) compared to n, even randomized online algorithms cannot do

better than the simple greedy algorithm here, but leave open the best number of colors for larger

values of ∆. While there have been major improvements over the last few years, an asymptotically

tight bound is still open for this and a few variations of the problem.

5

In a fusion of the online and streaming models, we consider the problem of “streaming online

edge coloring”: finding algorithms that use o(n∆) space to compute an online edge coloring of a

stream of edges encoding a graph of maximum degree ∆. This builds off some work by [BDH+19,

CL21, ASZZ22] in a “W-streaming” model for edge coloring that, compared to streaming online

edge coloring, allows the algorithm to delay the reporting of edge colors.

We obtain a number of results, finding new algorithms for streaming edge coloring that signifi-

cantly reduce the amount of space needed, at the cost of increasing the number of colors used by

large constant factors or more. We consider both the “edge-arrival” model (where the algorithm

receives and picks colors for a single edge at a time) and the “vertex-arrival” model (where the al-

gorithm receives and picks colors for all the edges between a vertex and earlier-arriving vertices, in

one batch). We find randomized algorithms and, while they use more colors and need exponential

preprocessing time, deterministic algorithms. Among our results are:

• A general mechanism to trade space used for the number of colors, which can be applied to

algorithms which edge-color multigraphs;

• A deterministic algorithm to edge-color multigraphs presented as vertex-arrival streams, using

O(∆) colors and O(n polylog(n,∆)) space;

• A deterministic algorithm to edge-color multigraphs presented as vertex-arrival streams, using

O(∆(log∆)2) colors and O(n polylog(n,∆)) space.

We also prove that deterministic edge-coloring algorithms for both vertex- and edge-arrival

streams, which use ≤ (2− ε)∆ colors, for some ε > 0 and ∆/n≪ 1, must use Ω(ε3n) space.

Our full results here are described in Chapter 5.

Conclusion. All three problems: MissingItemFinding, graph coloring, and edge coloring, re-

quire one to output values from a set that shrinks as the stream progresses. While there will be

common themes and techniques between these chapters, the details of the problems differ enough

that we find no simple message for all three cases. That being said, if we suddenly had to design a

streaming algorithm to color CW-complexes or maintain a safe spot in a collapsing art gallery:

• For an algorithm, we could pick outputs from a random sequence of values, and skip over

those which don’t work.

• For lower bounds, we would first consider a counting argument: what is an upper bound on

the fraction of inputs that can be compatible with a given state of the algorithm?

See the ends of individual chapters for specific observations and open problems.

6

Chapter 2

Definitions

2.1 Basic definitions and notation

Notation. The following notation applies throughout this thesis. Individual chapters and sections

may introduce more.

The set [n] := {1, 2, . . . , n}, and
(
A
k

)
is the set of k-sized subsets of A. log(x) is the base-2

logarithm, while ln(x) is the base-e logarithm. We define:

1B :=

1 if B holds

0 if it does not
.

The notation 1⃗ gives an all-1s vector. X∗ is the set of lists of elements of X, including the empty

list. Fq is the finite field with q elements, for q a prime or power of a prime, and Zt is the ring

of integers mod t. For a set B, sort(B) is the vector containing the elements of B in ascending

order. For a vector v, and set A, A ⊆ v means that every element of A is an entry of v. If D is a

distribution, then A ∼ D means that A is randomly sampled according to the distribution D. If S
is a set, then A ∈R S means that A is chosen uniformly at random from S. E[X] is the expected

value of random variable X. For a set T , △[T] is the space of distributions over T .

Hash Functions. We will use the following standard properties of families of hash functions. A

hash family H of functions A→ B is k-independent if, for all distinct a1, . . . , ak ∈ A, and arbitrary

b1, . . . , bk ∈ B,

Pr
h∈RH

[
h(a1) = b1 ∧ · · · ∧ h(ak) = bk

]
= 1/|B|k .

The family is 2-universal if, for all distinct a1, a2 ∈ A,

Pr
h∈RH

[
h(a1) = h(a2)

]
≤ 1/|B| .

7

One-Way Communication Complexity. In Chapters 3 and 4, we shall consider a special kind

of two-player communication game: one where all input belongs to the speaking player Alice, whose

goal is to induce Bob to produce a suitable output.1 Such a game, g, is given by a relation g ∈ X×Z,
where X is the input domain and Z is the output domain. In a protocol Π for g, Alice and Bob

share a random string R. Alice is given x ∈ X and sends Bob a message msg(x,R). Bob uses this to

compute an output z = out(msg(x,R)). We say that Π solves g to error δ if ∀x ∈ X : PrR[(x, z) ∈
g] ≥ 1 − δ. The communication cost of Π is cost(Π) := maxx,R length(msg(x,R)). The (one-way,

randomized, public-coin) δ-error communication complexity of g is R→
δ (g) := min{cost(Π) : Π

solves g to error δ}.
If Π does not depend on R, it is deterministic. Minimizing over zero-error deterministic protocols

gives us the one-way deterministic communication complexity of g, denoted D→(g).

2.2 Streaming algorithms and models

A streaming algorithm is one which processes a long data stream x = (a1, . . . , am) of input items,

and computes a function of the data stream, using significantly less space than would be needed

to store the stream (or, if the stream is of updates to some object, significantly less space than

is needed to store the object.) While usually one would like an algorithm to operate efficiently –

perhaps in polylogarithmic time per item – the space usage of the algorithm is typically the initial

target of research.

2.2.1 Types of randomness

In many cases, one can prove that a deterministic streaming algorithm can not do much better

than just storing its input. If one is willing to accept a chance of error in return, one can obtain

algorithms requiring significantly less space, using random decisions to discard information that

is unlikely to be useful. In this subsection, we classify a few common ways in which a streaming

algorithm might use randomness. While the “stronger” types of randomness may provide better

performance guarantees, in exchange they require more programming and operational effort to use.2

We view streaming algorithms as generalizations of finite state machines. An algorithm A has

a finite set of states Σ, a finite input set I, and a finite output set O. The algorithm also has a

1Strictly speaking, this is an encoding-decoding problem.
2For example, to make random decisions a computer ultimately needs some source of randomness: but many

micro-controllers may not have one. It is often much easier to verify that a deterministic algorithm is correct than
to check that a randomized algorithm is correct with the desired probability. Randomized algorithms which can fail
may require careful balancing between cost and reliability: an error level appropriate for a few runs will not be when
an algorithm is run trillions of times. Finally, a deterministic algorithm is helpful when observability is limited: one
can be certain that an unexplained failure in a system was not caused by the algorithm, and instead evaluate other
rare failure modes.

8

transition function τ : Σ × I × R → Σ indicating the state to switch to after receiving an input;

how the third parameter (in R) is used depends on the type of randomness. There are four cases:

Deterministic. The initial state of the algorithm is fixed, and τ is deterministic (does not depend

on the third parameter). Each state has a unique output in O associated with it.

Random seed. The initial state of the algorithm is drawn randomly from a distribution D over

Σ, and τ is deterministic. Each state has a unique output in O associated with it.

Random tape. The initial state of the algorithm is drawn randomly from a distribution D over

Σ.3 R is a sample space; when the algorithm receives an input e ∈ I, and is at state σ ∈ Σ, it

chooses a random ρ ∈ R independent of all previous choices and moves to state τ(e, σ, ρ). Each

state has a unique output value in O associated to it.4

Random oracle. The initial state of the algorithm is fixed. R is a sample space. At the start of

the algorithm, a specific value R ∈ R is drawn, and stays the same over the course of the algorithm.

When the algorithm is at state σ and receives input e, its next state is τ(e, σ,R). A random oracle

algorithm can be interpreted as choosing a random deterministic algorithm, indexed by R, from

some list. The output of the algorithm is a function of the current state σ and R.

We briefly comment on the hierarchy of these models. Every z-bit (2z-state) deterministic

algorithm can be implemented in any of the random models using z bits of space; the same holds

for any z-bit random seed algorithm. However, with m the maximum stream length, every z-bit

random tape algorithm only has a corresponding ≤ (z + log(m))-bit random oracle algorithm,

because for a random oracle algorithm to emulate a random seed algorithm it must have a way to

get “fresh” randomness on each turn. An alternative, which lets one express z-bit random tape

algorithms using a z-bit random oracle, is to assume the random oracle algorithm has access to

a clock or knows the number of inputs made so far for free; both are reasonable assumptions in

practice.

As a consequence of Newman’s theorem [New91], any random oracle or random tape algorithm

in the static setting with error δ can be emulated using a random seed algorithm with only ε

increase in error and an additional O(logm+ log log |I|+ log 1
εδ) bits of space.

5

3Requiring that this model use a fixed initial state could make implementations of algorithms use one additional
“init” state.

4Alternatively, we could associate a distribution of outputs to each state, or a function mapping (input, state)
pairs to outputs. As these formulations are slightly more complicated to prove things with, and only affect the space
usage of MissingItemFinding algorithms by an additive O(logn+ log 1

δ
) amount, we stick with the one state = one

output convention.
5The resulting emulated algorithm is non-constructive/not polynomial time.

9

2.2.2 Setting and performance requirements

Definition 2.2.1. We generally require that algorithms be “tracking” [BJWY20]; i.e., that they

present an output after each input item and that this entire sequence of outputs be correct.6

Streaming algorithms are also classified by the kind of correctness guarantee they provide: here

are a few possible meanings of the statement “algorithm A is δ-error” (we assume that A handles

streams of length ℓ with elements in I and has outputs in O):

Static setting. For all input streams x ∈ Iℓ, runningA against x will produce incorrect output

with probability ≤ δ.

Adversarial7setting. For all adaptive adversaries α (i.e., functions8 α : O⋆ → I; programs

that choose the next input to A based on the full history of outputs of A), running A against α

will produce incorrect output with probability ≤ δ.

White-box adversarial setting. For all “white box adaptive adversaries” X, running the

algorithm A against X will produce incorrect output with probability ≤ δ. A white-box adaptive

adversary is one which chooses the next input as a function of the current state of the algorithm.9

Such adversaries are not omniscient: we assume that for random tape algorithms, they cannot

predict any future random decisions, and for random oracle algorithms, they cannot see the contents

of the random oracle.10 When setting a white-box adversary against a random seed algorithm, the

random seed algorithm might as well be deterministic, as the white box algorithm can perfectly

predict the way it will respond to any input.

Pseudo-deterministic setting. There exists a canonical output function f : Iℓ → Oℓ so that,

for each x ∈ Iℓ, A(x) fails to output f(x) with probability ≤ δ.

Algorithms for the static setting are called “classic” streaming algorithms; ones for the ad-

versarial setting are called “adversarially robust” streaming algorithms. All pseudo-deterministic

algorithms are adversarially robust, and all adversarially robust algorithms are also classic.

We also consider “zero-error” variants of some of the streaming setting. Here, we require that

the algorithm always produce correct output, but measure its space cost differently. The algorithm

6We do not consider algorithms with a “one-shot” guarantee, to only be correct at the end of the stream, as for
MissingItemFinding, graph coloring, and most other problems the difference in space complexity is generally small.

7Notation for algorithms has many conflicts: some use “adversarial” to refer to the requirement that a classic
algorithm work on every possible input stream, not just randomly ordered streams; others may use it to signify that
a fraction of the inputs in an otherwise random stream may be corrupted by an adversary. It may help to think of
the “adversarial setting” as the “adaptive setting”, instead.

8It suffices to consider deterministic adversaries; because any randomized adversary can be implemented by ran-
domly choosing a deterministic algorithm from some distribution; then apply the minimax theorem.

9This can model the worst-case scenario of real-world adversaries that use timing attacks or other side channels
to determine the algorithm state.

10Other papers using the white-box adversarial setting use “random oracle” in the cryptographic sense. See
Section 2.2.3.

10

encodes its state as a string in {0, 1}⋆ using a variable-length, prefix-free encoding, and the cost of

the algorithm on a given input is the expected peak number of bits that this encoding takes. (See

Eq. 2.1.) The two associated settings are:

Zero-error static setting. The cost of the algorithm is maximum value of its cost (expected

peak length of the state) on any input stream x ∈ Iℓ. Formally, say Sx ∈ Nℓ+1 is the random

variable giving the history of the space used when an instance of the algorithm is run on the input

stream x. The (i+ 1)st entry of Sx is the length of the encoding of the state of the instance after

the ith element was received. The cost of the algorithm is:

max
x∈Iℓ

E[max
i∈[ℓ+1]

(Sx)i] . (2.1)

This model is useful in scenarios where many instances of the algorithm are being used in parallel.

Then the total amount of memory used will be very unlikely to exceed the expected value by

much.11 One need only consider and handle a single bad event (the entire system running out of

memory), instead of carefully picking error levels for individual instances to balance space usage

and reliability.

Zero-error adversarial setting. The cost of the algorithm is maximum value of its cost

(expected peak state length) when faced with any adaptive adversary X. This cost can be larger

than the cost in the zero-error static setting, because an adversary might use the outputs of the

algorithm to pick next inputs which will make the algorithm use more space.

It is important to distinguish the zero-error setting from the following definition:

Definition 2.2.2. We say that a streaming algorithm is zero-mistake with error δ if, for all inputs,

it always produces either a correct output or the symbol ⊥, and produces ⊥ with probability ≤ δ.
The space cost of the algorithm is defined to be the maximum space used at any time, over all

possible inputs.

As we will explain later, given any zero-error algorithm, one can construct a zero-mistake

algorithm for any error level δ. The reverse does not work, and there are many problems with

exponential separations between the zero-error and zero-mistake models; MissingItemFinding in

Chapter 3 is but one example.

However, for computational and communication complexity, the “zero-error” and “zero-

mistake” definitions are equivalent up to constants. A zero-mistake communication protocol can

11Thus, the space complexity in the zero-error static setting gives an upper bound on the amortized space com-
plexity.

11

be converted to a zero-error communication protocol by repeating it until it succeeds [DHP+22].12

The same can be done for general (Turing-machine) randomized algorithms; repeating a zero-

mistake algorithm produces a zero-error/Las-Vegas algorithm. However, for streaming algorithms,

it is not possible to repeat the stream, so this trick does not work.

In general, if there exists a zero-error algorithm A using (in the worst case over all inputs)

expected peak S bits of space, it can be converted to a δ-error, zero-mistake algorithm which

always uses O(S log 1
δ) bits of space. The construction is straightforward: run

⌈
log 1

δ

⌉
independent

copies of A on the input, and whenever one of the copies uses more than 2S space, stop running it.

Outputs are provided using an arbitrary copy of A that is still running. Each copy independently

uses too much space with (by Markov’s inequality) ≤ 1
2 probability, so with ≥ 1− δ probability at

least one of the copies will keep running until the end of the stream. (This method works because

the copies of A can only stop by running out of space; they never give incorrect outputs.) Using

this reduction, lower bounds in the static and adversarial settings can be translated to lower bounds

in the zero-error-static and -adversarial settings.

These distinctions will prove important when discussing the mif problem in Chapter 3, where

we will use both zero-error and zero-mistake notions. In fact, most of the streaming graph coloring

algorithms in Chapter 4 and streaming edge coloring algorithms in Chapter 5 will provide also a

zero-mistake guarantee.13

2.2.3 Related work

The following brief survey of work related to the above definitions is by no means comprehensive.

Streaming algorithms. Streaming algorithms are often useful wherever long sequences of data

are processed. One of the more notable early14 works is [AMS99], which describes an algorithm for

estimating the frequency moments of cash-register-type data streams. (A cash-register-type stream

is a sequence of elements in [n]; one has a vector y ∈ Z[n] counting the number of times each element

arrives; the goal for kth moment estimation is to compute
∑

i∈[n] |yi|k after the updates have been

applied. In contrast, a turnstile stream contains updates which can both increase and decrease the

entries of y.) It also proves lower bounds using a reduction from a problem in multi-player one-way

communication. Since then, a lot of work has been published on the topic: an older survey is given

by [Mut05]. Recent trends in streaming algorithms include the study of graph streaming [McG14]

12For one-way communication, the message is also not repeatable, so one could similarly define a zero-error/zero-
mistake distinction. The idea is not new–[MWY13] consider one-way protocols parameterized by abort (returning
⊥) and mistake probabilities.

13With some effort, many could also be converted to zero-error algorithms; see Theorem 3.4.3 for how this works
for MissingItemFinding.

14Technically, [Kah65]’s algorithm for floating point summation qualifies as a streaming algorithm, and has been
used as such.

12

and clustering [ZA21].

Adaptive adversaries and streaming. An influential early work [HW13] considered adaptive

adversaries for linear sketches for the task of estimating the ℓ2 norm of turnstile streams; they

found that any linear sketch could be broken with a polynomial number of inputs. This is signif-

icant because many streaming algorithms use linear sketches; and in fact, [LNW14, KP20] show

that under certain conditions, the most efficient streaming algorithms for turnstile streams use

linear sketches. The adversarial setting was formally introduced by [BJWY20], who provided gen-

eral methods (like “sketch-switching”) for designing adversarially robust algorithms given classic

streaming algorithms, especially in cases where the problem is to approximate a real-valued quan-

tity. For some tasks, like F0 estimation, they obtain slightly lower upper bounds in the random

oracle model, although later work ([WZ22]) removed this assumption. In particular, for (1 ± ε)-
approximating a real-valued function, [BJWY20] gave two generic frameworks that can “robustify”

a standard streaming algorithm, blowing up the space cost by roughly the flip number λε,m, de-

fined as the maximum number of times the function value can change by a factor of 1± ε over the

course of an m-length stream; this is a lower bound on the number of times the algorithm must

change its value (and thereby potentially leak new information that an adversary could exploit).

For insertion-only streams and monotone functions, λε,m is roughly O(ε−1 logm), so this overhead

is very small. Subsequent works [HKM+20, WZ21, ACSS21] have used how to use differential

privacy techniques and “difference estimators” to improve this multiplicative overhead; the current

best factor is O
(√

ελε,m
)
[ACSS21].

Most of these papers focus on providing algorithms and general techniques, but there has

been some work on proving adversarially robust lower bounds. [KMNS21] describe a problem to

approximate a certain real-valued function (derived from an adaptive data analysis problem) that

requires exponentially more space in the adversarial setting than in the static setting.

There have been strengthenings—and weakenings—of the adversarial setting since its intro-

duction. [ABJ+22] introduced the white-box adversarial setting, and rule out efficient white-box

adversarially robust algorithms for tasks like Fp moment estimation, while finding algorithms for

heavy-hitters-type problems. They also show how to reduce white-box adversarially robust algo-

rithms from deterministic 2-party communication protocols, where lower bounds may be easier to

prove. On the other hand, [SSS23] consider a modification of the adversarial setting in which the

adaptivity of the adversary is limited; they also introduce a model variant where the algorithm can

occasionally access an oracle to get advice about the history of the stream.

[CKL+24] consider a clustering problem for “adaptive-order” streams: where the elements of

the stream are fixed, but the adversary adaptively chooses the order in which they are presented.

A few other tasks have been studied in the adversarial setting. [BSS22] consider the space

13

needed to maintain dynamic spanners of graphs. [WZZ23, PR23] consider the Experts Problem.

[CNSS23, CLN+22] design specific adversaries for the CountSketch algorithm for heavy hitters,

and describe a way to make it adversarially robust. [PR22] consider how the HyperLogLog sketch

behaves against different types of adversaries, and suggest ways to reinforce the sketch.

Adaptive adversaries and sublinear data structures. A streaming algorithm is just a data

structure for a specific task, using space sublinear in the input size. One common randomized,

sublinear-space data structure is the Bloom filter, used to check (with false positives, but no false

negatives) whether an element is in a set. [NY19] and others [CPS19, FPUV22, NO22] consider

adaptive attacks on bloom filters and other probabilistic membership/count query data structures,

in some cases providing more robust (but still sublinear space) data structures.

Adversaries and machine learning. What is a machine learning model that learns from

data presented online, but a streaming algorithm that produces a compact summary of its in-

put? [HJN+11] gave a survey on the topic of adversaries for online machine learning algorithms,

classifying the many possibly objectives of such adversaries – among others, to learn private train-

ing information, trick the algorithm to produce incorrect or biased output, or discover on which

inputs the model will make mistakes. While there have been many specific attacks and defenses

constructed [CAD+18], we are not aware of any strong guarantees, as exist for typical streaming

tasks.

Pseudo-determinism. While the notion of pseudo-deterministic algorithms appears to have

been introduced (with different terminology) by [GG11], it was only applied to streaming algorithms

by [GGMW20], who found lower bounds for a few problems. Later work [BKKS23, GGS23] finds

lower bounds for pseudo-deterministic streaming algorithms for approximately counting the number

of elements received; the latter finds they require Ω(logm) space, where m is the stream length; in

contrast, in the static setting, Morris’s counter algorithm15 uses only O(log logm) space.

Random oracles. Assuming access to a random oracle is a reasonable temporary measure when

designing streaming algorithms in the static setting. As noted at the beginning of Section 4.1,

[Ind06] designed Lp-estimation algorithms using random linear sketch matrices, without regard to

the amount of randomness used, and then described a way to apply Nisan’s PRG [Nis90] to partially

derandomize these algorithms and obtain efficient (random seed) streaming algorithms. In general,

the use of PRGs for linear sketches has some space overhead, which later work (see [JW23] as a

recent example) has been working to eliminate.

15Morris’s is a “random tape” algorithm; “random seed” algorithms for counting aren’t better than deterministic
ones.

14

It is important to distinguish the “random oracle” type of streaming algorithm from the “random

oracle model” in cryptography [BR93], in which one assumes that all agents have access to the

random oracle. Such a public random oracle can be used as stronger version of a cryptographic hash

function, with the understanding that later work can use more specific constructions. This is similar

to the way in which random oracles can be a temporary step when designing streaming algorithms.

[ABJ+22], when defining white box adversaries, also assume they can see the same random oracle

as the algorithm; and, for one task, obtain a more efficient algorithm against a computationally

bounded white-box adversary, when both have access to a random oracle, than when neither do.

Tight lower bounds are known in neither case. [FW23] also designs a few streaming algorithms for

this computationally bounded white-box adversarial setting with shared random oracle.

The power of different types of access to randomness has been studied in computational com-

plexity. [Nis93] finds that logspace Turing machines with access to a multiple-access random tape

can (with zero error) accept languages that logspace Turing machines with a read-once random

tape accept with bounded two-sided error.16

2.3 Common lemmas

Lemma 2.3.1 (Multiplicative Azuma’s inequality). Let X1, . . . , Xt be [0, 1] random variables, and

α ≥ 0. If, for all i ∈ [t], E[Xi | X1, . . . , Xi−1] ≤ pi, then

Pr

[
t∑

i=1

Xi ≥ (1 + α)
t∑

i=1

pi

]
≤ exp

(
−((1 + α) ln(1 + α)− α)

t∑
i=1

pi

)
≤ exp

(
− α2

2 + α

t∑
i=1

pi

)
.

On the other hand, if for all i, E[Xi | X1, . . . , Xi−1] ≥ pi, then

Pr

[
t∑

i=1

Xi ≤ (1− α)
t∑

i=1

pi

]
≤ exp

(
−((1− α) ln(1− α) + α)

t∑
i=1

pi

)
≤ exp

(
− α2

2

t∑
i=1

pi

)
.

(The usual form of Azuma’s inequality uses a martingale presentation and gives an additive-type

bound.)

Proof of Lemma 2.3.1. We only prove this elementary lemma because it’s hard to find a source for.

We essentially repeat the proof of the Chernoff bound, with slight modifications to account for the

dependence of Xi on its predecessors.

First, the ≥ direction. Choose, with foresight, z = ln(1 + α).

Pr

[
t∑

i=1

Xi ≥ (1 + α)
t∑

i=1

pi

]
16There is no power difference between read-once and multiple access random tapes for time complexity classes,

since an algorithm can just copy every bit of the read-once tape that it uses into scratch memory.

15

= Pr

[
exp(z

t∑
i=1

Xi) ≥ exp(z(1 + α)

t∑
i=1

pi)

]

≤
E exp(z

∑t
i=1Xi)

exp(z(1 + α)
∑t

i=1 pi)

≤ E[ezX1E[ezX2 . . .E[ezXt |X1, . . . , Xt−1] . . . |X1]]

exp(z(1 + α)
∑t

i=1 pi)
.

The innermost term E[ezXt |X1, . . . , Xt−1] is, by the convexity of ez, ≤ pte
z + (1 − pt) ≤ ept(e

z−1);

after applying this upper bound, we can factor it out and then bound the E[ezXt−1 | . . .] term, and

so on. Continuing the chain of inequalities gives:

≤
exp

(
(ez − 1)

∑t
i=1 pi

)
exp

(
z(1 + α)

∑t
i=1 pi

) = exp

(
−((1 + α) ln(1 + α)− α)

t∑
i=1

pi

)
.

For the other direction, set z = ln(1 − α), which is < 0. This time, E[ezXt |X1, . . . , Xt−1] ≤
pte

z + (1 − pt) because pt is a lower bound for E[Xt|X1, . . . , Xt−1], and z is negative. We again

have, pte
z + (1− pt) ≤ ept(e

z−1), so:

Pr

[
t∑

i=1

Xi ≤ (1− α)
t∑

i=1

pi

]
= Pr

[
exp(z

t∑
i=1

Xi) ≥ exp(z(1− α)
t∑

i=1

pi)

]

≤ . . . ≤
exp

(
(ez − 1)

∑t
i=1 pi

)
exp

(
z(1− α)

∑t
i=1 pi

)
= exp

(
−((1− α) ln(1− α) + α)

t∑
i=1

pi

)
.

The following definition proves helpful when trying to prove concentration bounds derived from

randomly chosen subsets in
([n]
k

)
.

Definition 2.3.2 (Negative association). We say that a collection of real-valued random variables

X1, . . . , Xn is negatively associated (NA), if for all pairs of disjoint subsets A1, A2 of [n], and

nondecreasing17 functions f1 : RA1 → R, f2 : RA1 → R,

E[f1((Xi)i∈A1) · f2((Xi)i∈A1)] ≤ E[f1((Xi)i∈A1)] · E[f2((Xi)i∈A1)] . (2.2)

This notion was introduced by [JP83]. In particular, if the random variable S is chosen uniformly

at random from
([n]
k

)
, and for each i ∈ [n], Xi = 1i∈S , then the random variables X1, . . . , Xn are

negatively associated. A few common transformations described in [JP83] preserve this property:

• Subsets of NA families are also NA.
17Replacing both functions f1, f2 with −f1 and −f2 in Eq. 2.2 does not change the truth value, so we can also

assert negative association by considering all nonincreasing functions.

16

• The union of independent sets of NA random variables is NA.

• Applying nondecreasing functions to disjoint subsets of NA variables produces an NA family.

(For example: if {X1, X2, X3, X4} are NA, then so are {X1 +X2, max(X3, 0) ·max(X4, 0)}.)

Lemma 2.3.3 (Chernoff bound with negative association, from [JP83]). The standard multiplica-

tive Chernoff bounds work with negatively associated random variables. Specifically, if X1, . . . , Xn

are negatively associated [0, 1] random variables, δ ≥ 0, and µ = E
∑n

i=1Xi, then:

Pr[
n∑

i=1

Xi ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

≤ exp

(
− δ2

2 + δ
µ

)

Pr[
n∑

i=1

Xi ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ

≤ exp

(
−δ

2

2
µ

)
.

Lemma 2.3.4 (Error amplification by majority vote). Let ε ≤ δ ≤ 1/3. Say X is a random

variable, and v a value with Pr[X = v] ≥ 1 − δ. If X1, . . . , Xp are independent copies of X, then

the most common value in (X1, . . . , Xp) will be v with probability ≥ 1− ε, for ε = (2δ)p/30.

(This standard lemma can be used to trade error for space for algorithms which only have a

single valid output.)

Proof of Lemma 2.3.4. For each i ∈ [p], let Yi be the random indicator variable for the event that

Xi ̸= v. Let α = 1
2δ − 1.The probability that v is not the most common element can be bounded

by the probability that it is the not the majority element; by a Chernoff bound, this is:

Pr[
∑
i∈[p]

Yi ≥
1

2
p] = Pr[

∑
i∈[p]

Yi ≥ (1 + α)δp] ≤ exp (−((1 + α) ln(1 + α)− α)δp)

≤ exp (−0.073((1 + α) ln(1 + α))δp) since α ≥ 1/6

≤ exp

(
−0.073

2δ
ln

1

2δ
δp

)
= (2δ)

0.073
2

p ≤ (2δ)p/30 .

17

Chapter 3

Streaming algorithms for Missing

Item Finding

3.1 Introduction

The extent to which a streaming algorithm is vulnerable to input made by adaptive adversaries

depends critically on the use of randomness by the algorithm. An adversary that somehow manages

to determine all the past and future random choices made by an algorithm may be able to counteract

the benefits of that randomness, and identify a specific continuation of the input stream on which

the instance fails. Algorithms that are robust to adversaries often prevent the adversary from

learning any of their important random decisions, and ensure that the decisions which are revealed

do not affect the future performance of the algorithm. For example, [BJWY20] mentions a sketch-

switching method in which a robust algorithm maintains multiple independent copies of a non-

robust algorithm; it emits output derived from one non-robust instance until it reaches the point

where an adversary might make the instance fail, at which point the algorithm switches to another

instance, none of whose random choices have been revealed to the adversary yet.

Recent research has introduced models with requirements stronger than adversarial robustness.

In the white-box streaming model [ABJ+22], algorithms must avoid errors even when the adversary

can see the current state of the algorithm (i.e, including past random decisions), but not future

random decisions. In the pseudo-deterministic model [GGMW20], streaming algorithms should with

high probability always give the same output for a given input; such algorithms are automatically

robust against adversaries, because (assuming the algorithm has not failed) the outputs of the

algorithm reveal nothing about any random decisions made by the algorithm.

In order to better understand the differences between all these models, we study a streaming

problem known as Missing Item Finding (mif). This problem is perhaps the simplest search problem

for data streams where the space of possible answers shrinks as the stream progresses.

18

Problem 3.1.1 (MissingItemFinding (mif)). Let ℓ < n be positive integer parameters. The

input to the mif(n, ℓ) problem1 is a data stream a1, . . . , aℓ of length ℓ, where the elements are

integers in the set [n]; duplicates are permitted. The goal is, after every stream prefix a1, . . . , ai,

to output an integer x ∈ [n] not seen before (so that x /∈ {a1, . . . , ai}.)

This problem has proven itself interesting because it has significantly different space complex-

ities in a variety of streaming models; we obtain significantly different space complexities for ran-

domized algorithms in the static setting, random oracle algorithms in the adversarial setting, and

deterministic algorithms. Surprisingly, we find that when ℓ ∈ [nΩ(1), O(
√
n)], random oracle ad-

versarially robust algorithms require exponentially less space than random tape robust algorithms;

and when ℓ = 2O(
√
logn), adversarially robust random tape algorithms use exponentially less space

than random seed algorithms. Thus, in the adversarial setting – unlike the static setting – one can

obtain significant space reductions if one has access to a random oracle (in practice, a cryptographic

random number generator) or a random tape (in practice, a hardware random number generator).

3.1.1 Results

Definitions for all the models that will be mentioned are given in Sections 2.2.1 and 2.2.2.

Our results are summarized in Table 3.1. For a view organized by setting/performance re-

quirement and by the type of randomness used, see Table 3.2. The space complexities in the

adversarial setting are plotted for the four different types of randomness in Figure 3.1. We will

briefly present our theorems, grouped logically, not by proof order, and defer detailed explanations

of their techniques to the sections in which they are proven.

Randomized algorithms in the static setting. We first consider MissingItemFinding in

the static setting. We obtain two nontrivial algorithms: one which is very efficient when ℓ ≪ n,

and one which guarantees low space usage even when ℓ = n − 1. To simplify comparisons with

algorithms in the adversarial setting, we present our results using tracking, not one-shot error (recall

Definition 2.2.1).

Theorem 3.2.1. In the static setting, there is a random oracle streaming algorithm, Algo-

rithm 3.2.1, which solves mif(n, ℓ) with tracking error ≤ δ, and uses t ≤ min(ℓ, log(1/δ)log(n/ℓ)) bits of

space. (The total number of oracle random bits used is O((t + 1) log en
t+1): accounting for these

explicitly gives a random-seed algorithm using O(min(ℓ, log(n) + log(1/δ) log(n)
log(n/ℓ))) space.)

1For this problem, we use ℓ for the stream length, instead of m, because m and n are too easily confused in speech
and in handwriting.

2The table entry for the white-box adversarial, random oracle case assumes that only the algorithm has access to
the random oracle, not the adversary.

19

Setting Type Bound Reference

Static Deterministic

O(
√
ℓ log ℓ+ ℓ log ℓ

logn) Theorem 3.5.2

O(ℓ log log(4n/ℓ)log(2n/ℓ) +
√
ℓ log ℓ) Theorem 3.5.3 †

Ω(ℓ
log(2n/ℓ) +

√
ℓ) Theorem 3.5.1

Static Random seed O
(
(log n)2 log logn

δ

)
Theorem 3.2.2 †

Static Random tape ≥ log(ℓ+ 1) Lemma 3.1.2

Static Random oracle O(log(1/δ)log(n/ℓ)) Theorem 3.2.1

Static Random oracle ≥ Ω
(

log(1/δ)
logn log(2n/ℓ) +

√
log(1/δ)
logn)

)
Theorem 3.9.1

Static Random oracle ≥ Ω
(
max

(
0, ℓ

n min
(
ℓ,

log 2
δ

log 2n
ℓ

)
− 50

))
Theorem 3.9.3

Adversarial Random oracle

O((1 + ℓ2

n + log 1
δ) log ℓ) Theorem 3.3.6

Ω(log(1− δ) + ℓ2

n) Theorem 3.3.5

≥ log(ℓ+ 1) Lemma 3.1.3

Zero error
adversarial

Random oracle O((1 + ℓ2

n) log n) Theorem 3.4.2

Zero error
static

Random oracle Ω(1 + ℓ2

n) Theorem 3.4.1

Pseudo-
deterministic

Random oracle Ω(ℓ log 1/(2δ)

(log 2n
ℓ
)2 logn

+
(
ℓ log 1

2δ

)1/4
) Theorem 3.6.8

Adversarial Random seed
O((ℓ

2

n +
√

ℓ
logn + ℓ1/3 + log 1

δ) log ℓ) Theorem 3.7.6

Ω(
√

ℓ
(logn)3

+ ℓ1/5) if δ ≤ 1
6 Corollary 3.7.3

Adversarial Random tape
O(ℓ

log ℓ
logn (log ℓ)2 log 1

δ) Theorem 3.10.6

Ω(log ℓlognℓ
15
32

log ℓ
logn

)
) if δ ≤ ℓ

213n
Theorem 3.11.7

White-box
adversarial

Random tape Ω(ℓ
log(2n/ℓ) +

√
ℓ) if δ = O(min(1, ℓ

2

n)) Theorem 3.8.1

Table 3.1: All our results for the space complexity of MissingItemFinding(n, ℓ), parameterized
by tracking error level δ ∈ [2−ℓ, 1/3], where applicable. Some of the theorems provide tighter and
more verbose bounds. † = algorithm is not polynomial time

20

Table 3.2: A more structured view of the space bounds from Section 3.1.1. The rows indicate
the setting/performance requirement for the algorithm; the column its implementation type. This
table shows how the space complexity increases as the requirements grow and use of randomness
are restricted. Bounds are evaluated at tracking error level δ = O(1/ poly(n)), and with ℓ = nΩ(1).

Random Oracle Random Tape Random Seed Deterministic

Static
Ω(ℓn log n) Ω(log ℓ)

Ω(ℓ
log(n/ℓ))

O((log n)3)

Adversarial
Ω(ℓ

2

n + log ℓ) Ω(ℓ
15
32

log ℓ
logn) Ω(ℓ

2

n +
√

ℓ
(logn)3

)

O((ℓ
2

n + 1) log n) O(ℓ
log ℓ
logn (log n)2) O((ℓ

2

n +
√
ℓ)(log n)2)

Zero error
static

Ω(ℓ
2

n + log ℓ)

O((ℓ
2

n + log ℓ) log ℓ)

O(ℓ log log(n/ℓ)log(n/ℓ))

Zero error
adversarial

Ω(ℓ
2

n + log ℓ) Ω(1
lognℓ

15
32

log ℓ
logn) Ω(ℓ

2

n +
√

ℓ
(logn)3

)

O((ℓ
2

n + 1) log ℓ) O(ℓ
log ℓ
logn (log ℓ)2) O((ℓ

2

n +
√
ℓ) log ℓ)

Pseudo-
deterministic

Ω(ℓ
(logn)3

+ ℓ1/4)

White-box
adversarial

See Adv./R. Ora-
cle2

Ω(ℓ
log(n/ℓ)) See Det.

Theorem 3.2.2. Algorithm 3.2.2 is a random seed streaming algorithm solving mif(n, n− 1) with

tracking error ≤ δ in the static setting. It uses O((log n)2 log logn
δ) bits of space.

At small error levels (δ = 1/poly(n)), the algorithm of Theorem 3.2.2 uses O((log n)3) bits of

space. This becomes more efficient than the random-seed version of Theorem 3.2.1’s algorithm when

ℓ ≥ n−O(n/ log n); and more efficient than the random oracle version when ℓ ≥ O(n/(log n)2).

Unfortunately, we do not have tight lower bounds in either case. For random-tape (and hence

also random-seed) algorithms, there is an ≥ log(ℓ + 1) space lower bound for mif(n, ℓ), from

Lemma 3.1.2. For cases where δ is very small, we obtain, by a reduction to the mif lower bound

for deterministic algorithms:

Theorem 3.9.1. For any δ ≤ 1/(2n), the space complexity for a random oracle algorithm solving

mif(n, ℓ) with error ≤ δ is

≥ Ω

(√
min

(
ℓ,
log(1/δ)

log n

)
+min

(
ℓ,
log(1/δ)

log n

)
1

1 + log(n/ℓ)

)
.

On the other hand, a different approach (which essentially reduces the problem to two-player

communication) gives:

21

Theorem 3.9.3. For any δ ≤ 1/2 and ℓ ≥ 4, the space complexity of a random oracle algorithm

solving mif(n, ℓ) with error ≤ δ (even if just evaluated at the end) is

≥ Ω

(
max

(
0,
ℓ

n
min

(
ℓ,

log 2
δ

log 2n
ℓ

)
− 50

))
.

The two results are incomparable; each is better for a certain set of parameters. The second,

when ℓ = Θ(n) and δ = Ω(1), has the form Ω(log(1/δ)), where the first only yields an Ω(log(1/δ)logn)

lower bound. On the other hand, the first theorem is much more useful when ℓ ≪ n, as for

parameters like ℓ =
√
n, δ = 1/ poly(n) the first theorem implies Ω(

√
log n) space is needed, while

the second gives a lower bound of zero.

We note that there are no nontrivial random oracle lower bounds for constant values of δ which

hold when ℓ ≪ n – because the random oracle algorithm which just outputs a uniform random

number in [n] (determined from the oracle), will use zero bits of state and have worst-case error

level δ = ℓ
n in the static setting.

Deterministic algorithms. We obtain almost matching upper and lower bounds for the space

complexity of deterministic streaming algorithms for MissingItemFinding. (As deterministic

algorithms have the same space complexity in all settings mentioned in this thesis, it is not necessary

to mention the setting.) Surprisingly, one can do somewhat better than the simple algorithm which

uses ℓ bits of state (which is described later in Algorithm 3.1.1).

Theorem 3.5.1. Every deterministic streaming algorithm for mif(n, ℓ) requires Ω(
√
ℓ+ ℓ

1+log(n/ℓ))

bits of space.

Theorem 3.5.2. Algorithm 3.5.1 is a deterministic algorithm that solves mif(n, ℓ) using

O(
√
ℓ log ℓ+ ℓ log ℓ

logn) bits of space.

Theorem 3.5.3. There is a deterministic algorithm (Algorithm 3.5.2) for mif(n, ℓ) using space:

O

(
ℓ log log 4n

ℓ

log 4n
ℓ

+
√
ℓ log ℓ

)
.

Of the two deterministic algorithms for mif(n, ℓ), Algorithm 3.5.1 processes updates in poly-

nomial time, while the slightly more space-efficient Algorithm 3.5.2 relies on a non-explicitly con-

structed set family. In both cases, the algorithms use within an O(log ℓ) multiplicative factor

of the space lower bound for all values of ℓ, n. The terms similar to ℓ
logn dominate as long as

ℓ = Ω((log n)2); and when ℓ = O((log n)2), the algorithm can no longer effectively use all the pos-

sible output values, and the deterministic space complexity falls between Ω(
√
ℓ) and O(

√
ℓ log ℓ).

22

Adversarial setting. In the adversarial setting, we find separations between all four types of

randomness. As the formulas for the random tape case are somewhat complicated, we plot the

asymptotic behavior in the ℓ ∈ [nΩ(1), n] regime as Figure 3.1.

1 n1/2 n3/5n2/3 n

Stream length, `

1

n1/8
n1/6
n1/5

n1/3

n

S
p

ac
e

Space complexity in the adversarial setting for MIF(n,`)

Deterministic

Random seed

Random tape

Random oracle

Figure 3.1: A log-log scale plot of the space complexity of algorithms in the adversarial setting with
four different types of access to randomness. The upper and lower bounds for the random tape case
differ asymptotically; the possible space complexities are shown in the shaded region. The random
seed, tape, and oracle space complexities overlap for ℓ ≥ n2/3. The plot is evaluated at n = 210000

and δ = 1/n2.

First, we find almost matching upper and lower bounds for algorithms using a random oracle.

Theorem 3.3.5. Any algorithm which solves mif(n, ℓ) against adaptive adversaries with error δ

requires ≥ log(
(

n
⌈ℓ/2⌉

)
/
(n−⌈ℓ/2⌉
⌊ℓ/2⌋+1

)
) + log(1− δ) bits of space; or less precisely, Ω(ℓ2/n+ log(1− δ)).

Theorem 3.3.6. Algorithm 3.3.1 solves mif(n, ℓ) against adaptive adversaries, with error δ, and

can be implemented using O(min(ℓ,
(
1 + ℓ2

n + ln 1
δ

)
· log ℓ)) bits of space. (It requires oracle access

to (ℓ+ 1) log n random bits.)

A key point for random oracle algorithms is when ℓ =
√
n; below this threshold, only

O(log 1
δ log ℓ) bits of space are needed.

23

While we have not fully resolved the random tape space complexity, our upper and lower bounds

for it are both piecewise-polynomial curves in ℓ:

Theorem 3.10.6. There is a family of adversarially robust random tape algorithms, where for

mif(n, ℓ) the corresponding algorithm has ≤ δ error and uses

O

(⌈
(4ℓ)

2
d−1

(n/4)
2

d(d−1)

⌉
(log ℓ)2 +min(ℓ, log 1

δ) log ℓ

)

bits of space, where d = max
(
2,min

(
⌈log ℓ⌉,

⌊
2 log(n/4)
log(16ℓ)

⌋))
. At δ = 1/ poly(n) this space bound is

O
(
ℓlogn ℓ(log ℓ)2 + log ℓ log n

)
.

Theorem 3.11.7. Random tape δ-error adversarially robust algorithms for mif(n, ℓ) require

Ω

(
max
k∈N

1

k

(
ℓk+1

n

) 2
k2+3k−2

)
= Ω

(
log ℓ

log n
ℓ
15
32

logn ℓ

)

bits of space, for δ ≤ ℓ
213n

.

For the algorithm of Theorem 3.10.6, the point where the space complexity stops depending on

n is when ℓ = 2Θ(
√
logn). For ℓ below this point, O((log ℓ)2 + log 1/δ log ℓ) space is used (and by

Lemma 3.1.2, Ω(log ℓ) space is needed.) Also note that for ℓ ≥ n2/3, the space complexity matches

the random oracle case (up to polylog(n) factors).

Random seed algorithms require a bit more space. Here we again have relatively tight bounds

when ℓ = nΩ(1), although the exact exponent for ℓ when ℓ = O(log n) is still open.

Corollary 3.7.3. Adversarially robust random seed algorithms for mif(n, ℓ) with error ≤ 1
6 require

Ω
(√

ℓ/(log n)3 + ℓ1/5
)
bits of space.

Theorem 3.7.6. Algorithm 3.7.1 is a random seed algorithm that solves mif(n, ℓ) in the adversarial

setting, with error ≤ δ, and can be implemented using O
(
(ℓ

2

n +
√

ℓ
logn + ℓ1/3 + log 1

δ) log ℓ
)
bits of

space.

Random seed algorithms always require ℓΩ(1) space; when ℓ = 2Θ(
√
logn), random tape algo-

rithms use exponentially less space.

Zero-error variations. We briefly consider the zero-error static and adversarial settings. We

find that zero-error algorithms in the static setting require (in expectation) about as much space

as random oracle algorithms in the adversarial setting; the same lower bound applies, of course, to

random seed and random tape algorithms.

24

Theorem 3.4.1. All algorithms solving mif(n, ℓ) with zero error on any stream require Ω(ℓ2/n)

bits of space, in expectation over the randomness of the algorithm.

Almost matching this theorem, we find that it is possible to convert any algorithm for mif(n, ℓ)

that does not “guess blindly” to a zero-error algorithm using some additional expected space.

Theorem 3.4.3. Let B be a zero-mistake (Definition 2.2.2) algorithm solving mif(n, ℓ) with ≤
1/ℓ error in the static (or adversarial) settings, implemented as a random tape, seed, or or-

acle algorithm, with worst-case space usage S. Then there is a zero-error static (or adversar-

ial) algorithm with the same randomness type solving mif(n, ℓ) with zero error that uses at most

S +O((1 + ℓ2/n) log ℓ) bits of space in expectation, on any input stream (or adversary).

In particular, by modifying the algorithm of Theorem 3.2.1 to abort instead of guessing when the

variable x is the all-ones vector, and applying this Theorem 3.4.3, we obtain a zero-error random-

seed algorithm in the static setting which uses O(min(ℓ, log ℓ logn
log(n/ℓ))) + O((log ℓ + ℓ2/n) log ℓ) =

O((log ℓ+ ℓ2/n) log ℓ) bits of space in expectation.

As noted in Section 2.2, a zero-error algorithm with expected space S can be converted to a

zero-mistake randomized streaming algorithm with error δ and space O(S log 1
δ). Consequently, the

lower bounds in the adversarial setting all translate to lower bounds in the zero-error adversarial

setting. In particular, the bound of Corollary 3.7.3, as it holds for δ = 1/6, also applies for zero error

algorithms (albeit weaker by a constant factor). As the random tape lower bound of Theorem 3.11.7

requires δ = O(ℓ/n), the corresponding lower bound for zero-error random-tape algorithms in the

adversarial setting is lower by a factor of O(log n
ℓ) = O(log n).

As our random seed, random tape, and random oracle algorithms for the adversarial setting

are all zero-mistake, we can combine them with Theorem 3.4.3 to obtain corresponding zero-error

algorithms for the adversarial setting. For random oracle algorithms in particular, a simple variation

on the random oracle algorithm of Theorem 3.3.6 can also be used instead of grafting on code with

Theorem 3.4.3:

Theorem 3.4.2. There is an algorithm solving mif(n, ℓ) with zero error against adaptive adver-

saries, which uses O((1 + ℓ2/n) log ℓ) bits of space, in expectation over the randomness of the

algorithm.

White-box adversarial. In the white-box adversarial setting, we consider only random tape

algorithms.3 We find:

3As noted in Section 2.2, against a white-box adversary, a random seed is not a secret, and one can do no better
than deterministic algorithms; while a random oracle, assuming the white-box adversary cannot see it, can be used
to conceal the algorithm state entirely, thereby reducing the white-box adversary to a regular adaptive adversary.

25

Theorem 3.8.1. Random tape algorithms for mif(n, ℓ) in the white-box adversarial setting with

error δ ≤ min
(

1
10 ,

ℓ2

400n

)
require space

Ω

(
ℓ

1 + log n
ℓ

+
√
ℓ

)
.

This gives a strong lower bound for the δ = O(min(1, ℓ2/n)) regime, matching up to constants

the current best lower bound for deterministic algorithms. As the simple O(log n)-bit algorithm

that produces a random output every step has error Θ(min(1, ℓ2/n)), it is not possible to extend

this lower bound to values of δ which are larger by more than a constant factor.

Pseudo-deterministic. A lower bound on the space complexity of pseudo-deterministic algo-

rithms for MissingItemFinding is given by the following theorem. As δ approaches 0, the lower

bound approaches (within a constant factor) the deterministic lower bound.

Theorem 3.6.8. Pseudo-deterministic δ-error random oracle algorithms for mif(n, ℓ) require

Ω

(
min

(
ℓ

log 2n
ℓ

+
√
ℓ,

ℓ log 1
2δ

(log 2n
ℓ)

2 log n
+

(
ℓ log

1

2δ

)1/4
))

bits of space when δ ≤ 1
3 . In particular, when δ = 1/ poly(n) and ℓ = Ω(log n), this is:

Ω

(
ℓ

(log 2n
ℓ)

2
+ (ℓ log n)1/4

)
.

We do not know of any pseudo-deterministic algorithms for mif which are more efficient than

the deterministic algorithm of Theorem 3.5.3.

3.1.2 Related work

The literature related to the streaming models studied in this chapter has been surveyed in Sec-

tion 2.2.3. In what follows we consider the context of the MissingItemFinding problem.

Variations. The MissingItemFinding problem appears to have been first studied by [Tar07].

While they primarily consider the problem of finding a duplicate element in a stream of m > n

elements chosen from [n], most of their results also apply to mif(n, n − 1). For example, their

multi-pass duplicate finding algorithms can easily be translated to multiple pass algorithms to find

a missing element. Their main results also hold: they find an deterministic streaming algorithm for

mif(n, n−1) using O(log n) bits of space must make Ω(log n/ log logn) passes over the stream, and

claim that a single-pass deterministic algorithm for mif(n, n− 1) requires at least 2n − 1 states.4

4As Algorithm 3.1.1 uses exactly 2n−1 states for mif(n, n− 1), the value 2n − 1 may be a typo.

26

A variation on the MissingItemFinding problem, that forbids repeated elements in the input

stream, was briefly studied in the first chapter of [Mut05], which mentions that for any k ≥ 1, on

a stream encoding a subset of [n] of size n − k, it is possible to recover the remaining k elements

with a sketch of size O(k log n).

If we were to extend the MissingItemFinding problem to turnstile streams, then we would end

up with something opposite to the “support-finding” streaming problem. In the support-finding

problem, the algorithm is given a turnstile stream of updates to a vector x ∈ Z[n]; on querying the

algorithm, it must return any index i ∈ [n] where xi ̸= 0. [KNP+17] find that this problem – and

the harder L0 sampling problem, where one must find a uniformly random element of the support

of x – have a space lower bound of Ω
(
min

(
n, log 1

δ (log
n

log(1/δ))
2
))

. This is close to [JST11]’s L0

sampling algorithm which uses O(log 1
δ (log n)

2) bits of space.

Similar games. The paper [MN22b] studies a two player game that is similar to Missing-

ItemFinding. Here there are two players, a “Dealer” and a “Guesser”: for each of n turns, the

players simultaneously do the following: the Dealer chooses a number from [n] that it has not

picked so far, and the Guesser guesses a number in [n]. The goal of the Guesser is to maximize

expected score, the number of times their number matches the Dealer’s choice; the Dealer tries

to minimize the score. The paper proves upper and lower bounds on the expected score, for a

number of scenarios. Notably, a Guesser that is limited to remember only m bits of information

can do much better against a static Dealer (that chooses a hard ordering of numbers at the start

of the game) than against an adaptive Dealer (that may choose the next number depending on

the guesses made by the Guesser). For example, m = O((log n)2) suffices for an expected score

of Ω(log n) against a static Dealer, but there exists an adaptive Dealer which limits any Guesser’s

expected score to (1+o(1)) lnm+O(log log n). The objectives of the Guesser and Dealer are similar

to those of the algorithm and adversary in MissingItemFinding: the Guesser tries to avoid, if

possible, guessing any value that the Dealer has revealed before; while the Dealer tries to ensure the

Guesser chooses that the Dealer had already sent before. However, unlike MissingItemFinding,

the Dealer-Guesser game requires that numbers dealt never be repeated and that all numbers be

used, which makes it much easier to identify a number that will be dealt in the future.

In the Mirror Game of [GS18], there are two players, Alice and Bob who alternately declare

numbers from the set [2n]. Unlike mif, players must continue until all numbers are used. The

players lose if they declare a number that has been declared before. Since Alice goes first, even if

Bob can only remember O(log n) bits about the history of the game, Bob still has a simple strategy

that will not lose. On the other hand, [GS18] prove that in order for Alice to guarantee a draw

against Bob, Alice requires Ω(n) bits of memory. If a low probability of error is acceptable, [Fei19]

provide a randomized strategy for Alice with O((log n)3) bits of memory that draws with high

27

probability – but this requires oracle access to a large number of random bits, or cryptographic

assumptions. [Fei19] and [MN22b] ask whether there is a strategy using O(polylog n) bits of memory

and of randomness. [MN22a] considers the scenario in which Alice is “open-book” (equivalently,

that Bob is a white-box adversary and can see her state), and find that Alice needs Ω(n) bits of

state to tie-or-win.

Data structures. The problem of constructing an adversarially resilient Bloom filter is addressed

by [NY19]. Here one seeks an “approximate set membership” data structure, which is initialized

on a set S of size n, and thereafter answers queries of the form “is x ∈ S” with false positive error

probability ε. An implementation of this structure is adversarially resilient if the false positive

probability of the last element in the sequence is still ≤ ε when the adversary chooses the sets

S, and adaptively chooses the sequence of t elements to query. In addition to lower and upper

bound results conditional on the existence of one-way functions, [NY19] find a construction for an

adversarially resilient bloom filter using O(n log 1/ε+ t) bits of memory.

Streaming. The MissingItemFinding problem has connections to graph streaming problems.

Just as the L0-sampling problem has been used by streaming algorithms that find a structure in a

graph, behaviors like those of the MissingItemFinding problem appear in algorithms that look for

a structure which is not in a graph. Specifically, the graph coloring problem is equivalent to finding a

small collection of cliques which cover all vertices but do not include any edge in the graph. [ACK19]

proved that general randomized streaming algorithms can ∆+1 color a graph in Õ(n) space, where

n is the number of vertices, and [ACS22] proved that deterministic streaming algorithms using

Õ(n) space must use exp(∆Ω(1)) colors. Their lower bound is noteworthy in particular because

they independently discovered essentially the same core argument as the deterministic lower bound

for MissingItemFinding, Algorithm 3.5.2. We suspect that many graph coloring problems will

behave similarly to MissingItemFinding, and discuss this further in Section 3.12.

Independent work. [Mag24] independently proved a few results for mif, that are largely super-

seded by this chapter. They prove an Ω(ℓ/ log n) lower bound for pseudo-deterministic algorithms

for mif(n, ℓ) which have the zero-mistake property (recall Definition 2.2.2), of either producing a

correct value or the ⊥ symbol, and get a corresponding Ω(
√
ℓ/ polylog(n)) lower bound for robust

zero-mistake random-seed algorithms using Lemma 3.7.1. They also describe an O(polylog(n))-

space random seed algorithm for the static setting, and give upper and lower bounds for solving

mif(n, ℓ) for “overfull” inputs in which ℓ ≥ n, but with the additional promise that there is at least

one missing item.

28

3.1.3 Warm-up

A simple algorithm. While in most cases there are more efficient alternatives, this algorithm

for mif(n, ℓ) is particularly simple, and uses only ℓ bits of space.

Algorithm 3.1.1 A simple deterministic streaming algorithm for mif(n, ℓ)

Initialization:

1: x← {0, . . . , 0}, a vector in {0, 1}[ℓ]

Update(e ∈ [n]):

2: if e ≤ ℓ then
3: xe ← 1

Query:

4: if ∃j ∈ [ℓ] : xj = 0 then

5: output: j

6: else

7: output: ℓ+ 1

Basic observations.

Lemma 3.1.2. Random tape and random seed streaming algorithms for mif(n, ℓ), which have a

nonzero chance of success on all inputs, require ≥ log(ℓ+ 1) bits of space.

Proof of Lemma 3.1.2. Each state of a random tape or random seed streaming algorithm has a

single associated output value. If z < log(ℓ+1), then the streaming algorithm has at most ℓ states.

Let H be the set of outputs of these states. When sent a stream containing each element of H, the

algorithm will fail because every possible output has been used.

Lemma 3.1.3. Random oracle streaming algorithms in the adversarial setting for mif(n, ℓ), with

a nonzero chance of success on all inputs, require ≥ log(ℓ+ 1) bits of space.

Proof of Lemma 3.1.3. Given a random oracle streaming algorithm A, run it against the “echo”

adversary, which repeatedly checks the output of the algorithm and sends that output back as

the next input. By the definition of a random oracle algorithm in Section 2.2.1, each state of A
corresponds to a single output. Run against the “echo” adversary, to be correct A must produce

ℓ+1 distinct outputs: one to start, and one new output after every input. Thus, A must use ≥ ℓ+1

different states.

29

3.2 Classical randomized algorithms

In this section we give two algorithms for MissingItemFinding in the static setting. Lower

bounds in the static setting are somewhat complicated (and far from being tight), so we defer their

presentation until Section 3.9.

3.2.1 A sampling algorithm

We give a simple algorithm that chooses a small random subset of [n], tracks which of the elements

in that set have been included (“covered”) in the stream so far, and outputs an arbitrary element

from the set that was not covered. This algorithm scales badly as ℓ/n approaches 1, as the subset

must be made larger to compensate for the increased fraction of covered elements,

Figure 3.2: This diagram shows the behavior of Algorithm 3.2.1 on an example input. The top
row of squares corresponds to the set [n], ordered so that the leftmost squares corresponds to the
elements L1, L2, . . ., Lt+1 from Algorithm 3.2.1. In the top row, cells contain a pink dot if the
corresponding element has already been seen in the stream. In the bottom row, each of the cells is
shaded dark if the corresponding entry in the vector x is equal to 1 – except for Lt+1, whose state
Algorithm 3.2.1 does not track.

Theorem 3.2.1. In the static setting, there is a random oracle streaming algorithm, Algo-

rithm 3.2.1, which solves mif(n, ℓ) with tracking error ≤ δ, and uses t ≤ min(ℓ, log(1/δ)log(n/ℓ)) bits of

space. (The total number of oracle random bits used is O((t + 1) log en
t+1): accounting for these

explicitly gives a random-seed algorithm using O(min(ℓ, log(n) + log(1/δ) log(n)
log(n/ℓ))) space.)

Proof of Theorem 3.2.1. First, we observe that Algorithm 3.2.1 gives an incorrect output only when

the input stream σ = (e1, . . . , eℓ) contains every element of L. Otherwise, either the first t elements

of L are in σ, and Lt+1 isn’t – in which case Line 8 returns Lt+1 – or there is some j ∈ [t] where

Lj has not been seen in the stream so far, in which case Line 6 correctly returns Lj . Given a fixed

input stream σ ∈ [n]ℓ, the probability that Algorithm 3.2.1 fails is:

Pr[L ⊆ σ] =
(
|σ|
t+ 1

)/(n

t+ 1

)
≤
(

ℓ

t+ 1

)/(n

t+ 1

)
=

ℓ(ℓ− 1) · · · (ℓ− t)
n(n− 1) · · · (n− t)

≤
(
ℓ

n

)t+1

.

Thus Pr[L ⊆ σ] is ≤ δ when t = ⌊log(1/δ)/ log(n/ℓ)⌋, and is equal to 0 when t = ℓ, because no set

of size ℓ can contain a set of size ℓ+ 1.

30

Algorithm 3.2.1 A streaming algorithm for mif(n, ℓ) with error rate ≤ δ on any input stream

Let t = min(ℓ, ⌊log(1/δ)/ log(n/ℓ)⌋)

Initialization:
1: Let L = {L1, . . . , Lt+1} be a random subset of t+ 1 distinct elements in [n], chosen uniformly

at random, with L1 < L2 < . . . < Lt+1. ▷ This can be stored explicitly using O(log
(

n
t+1

)
) bits,

or computed on demand as a function of an oracle random string.
2: x← (0, . . . , 0), a vector in {0, 1}t

Update(e ∈ [n]):
3: if ∃j ∈ [t] : Lj = e then
4: xj ← 1

Query:
5: if ∃j ∈ [t] : xj = 0 then
6: output: Lj

7: else
8: output: Lt+1

The space used of this algorithm is just t, for random oracle algorithms. For random seed

algorithms, where we explicitly store the list L, we need space:5

t+

⌈
log

(
n

t+ 1

)⌉
≤ (t+ 1)(1 + log n) ≤ (t+ 1) log 2n

≤ (
log 1

δ

log n
ℓ

+ 1) log 2n = log 2n+
log 2n

log n
ℓ

log
1

δ
.

3.2.2 Using sparse recovery

The performance of Algorithm 3.2.1 grows worse as ℓ approaches n; for ℓ = n− 1, log(n/ℓ) ≈ ln 2
n−1 ,

in which case the space usage of Algorithm 3.2.1 is Θ(n). We will now describe an algorithm that

is guaranteed to be efficient even for ℓ = n− 1. Let I be the set of integers included in the stream.

The set of integers in [n] which occur with frequency ≥ 2 in the stream has size ≤ ℓ − |I|, while
the set of integers with frequency zero has size = n− |I|. Thus, if we pick a random integer in [n]

which was in the stream with a frequency other than 1, it will have frequency zero with probability

≥ n−|I|
n−|I|+(ℓ−|I|) ≥

1
2 . Using a variant of an L0 sampling sketch, like that in [JST11], picking a

uniformly random element with frequency other than 1 can be done efficiently.

First, we note that while the linear sketch in [JST11] only reveals a coordinate i of the input

5When ℓ/δ ≪ n, it is possible to improve the asymptotic space usage slightly by pretending that n = ⌈ℓ/δ⌉; then
the algorithm uses O(log ℓ

δ
) space.

31

1 2 1 0 1
element frequencies

i=0
i=1
i=2
i=3
i=4
i=5

1 0 1 1 1 1 1 0 1 0 1 1 2 0 1 1 1 0 1 0 1 2 1 3 1 1 1

= frequency≥2 = frequency 1 = frequency 0

sparse
recovery
works

has
0‐freq
elmt.

Figure 3.3: Because ≥ 1
2 of the elements in [n] with frequency ̸= 1 in the stream have frequency

0, if we pick random subsets of [n] of progressively smaller sizes, one of them will likely both:
contain few elements of frequency ̸= 1; and contain at least one element of frequency 0. In the
above diagram, each box on the horizontal axis corresponds to a different integer in [32]. If in the
diagram shown, Algorithm 3.2.2 could only sparse-recover vectors of support ≤ 4, then it would
report the zero-frequency element (number 7 from the left) at filtering level i = 2.

vector x where xi is nonzero, the underlying sparse recovery sketch also provides the value of xi

itself. Thus, with only light modifications to [JST11], we obtain the following theorem. A diagram

which may help explain the algorithm is given in Figure 3.3.

Theorem 3.2.2. Algorithm 3.2.2 is a random seed streaming algorithm solving mif(n, n− 1) with

tracking error ≤ δ in the static setting. It uses O((log n)2 log logn
δ) bits of space.

First, we give a sparse recovery lemma:

Lemma 3.2.3. For s < n, there is a deterministic linear sketch A ∈ Zd×n to exactly recover a

vector x in Zn satisfying ∥x∥1 ≤ n and ∥x∥0 ≤ s. The matrix A has dimension d = O(
s log 2n

s
logn) and

entries in {0, . . . , n}.

Even when applied to dense vectors y ∈ Zn satisfying ∥y∥1 ≤ n, the entries of Ay will be in

[−n3, n3], so Ay can be encoded using O(s log 2n
s) bits.

This is not a practical sketch for sparse recovery of integer vectors. However, [IR08] provide

one with {0, 1} matrix entries which, when applied to integer vectors, would have slightly larger

dimension d = O(s log 2n
s), and which has a polynomial time decoder.

Proof of Lemma 3.2.3. Let K ⊆ Zn be the set of vectors with ℓ1-norm ≤ n, and ℓ0 norm ≤ s. Let
K2 = K −K := {x− y : x, y ∈ K}. A matrix A ∈ Zd×n can be used to exactly recover all vectors

in K if for all y ∈ K2 \ {⃗0}, Ay ̸= 0⃗.

We prove a valid A exists by the probabilistic method. Say the entries of A are independently

randomly chosen in {0, . . . , n}. For any nonzero y ∈ K2, if we fix all entries of A but those on a

32

column corresponding to a nonzero coordinate i of y, we obtain:

Pr[Ay = 0⃗] ≤
d∏

j=1

Pr[Aj,iyi = −
∑
k ̸=i

Aj,kyk] ≤ (1/(n+ 1))d .

Counting the number of nonzero entries, the signs, and the magnitudes of entries of vectors in K2:

|K2| ≤
(
n

2s

)
22s
(
2n+ 2s− 1

2s

)
< 24s log(en

√
2/s) .

With d =
⌈
4s log(en

√
2/s)

logn

⌉
, by a union bound the probability that A fails to recover all vectors in K

is < 1, so in particular there must exist at least one valid value for A.

Algorithm 3.2.2 A random-seed streaming algorithm for mif(n, n− 1) with ≤ δ error

Let s =
⌈
48 ln 5 logn

δ

⌉
Define: lsb : {0, 1}⌈logn⌉ → {0, . . . , ⌈log n⌉} to give the 0-base-index of the first coordinate of
its input which is 1, or ⌈log n⌉ if there are none.

Initialization:
1: Let h : [n]→ {0, 1}⌈logn⌉ be an s-wise independent hash function
2: for i = 0, . . . , ⌈log n⌉ do
3: Let Di = {j : lsb(h(j)) ≥ i} ▷ This ensures D0 = [n] ⊇ D1 . . . ⊇ D⌈logn⌉
4: Let Ai be a linear sketch to recover integer vectors in Zn with ℓ1 norm ≤ n and ℓ0 norm
≤ s, using e.g. Lemma 3.2.3

5: Initialize Ai on the vector which is −1 on Di and 0 elsewhere

Update(e ∈ [n]):
6: for i = 0, . . . , lsb(h(e)) do
7: Update Ai to increase the frequency of e by 1

Query:
8: for i = ⌈log n⌉, . . . , 0 do
9: Let yi ∈ Zn be the recovered vector from Ai

10: if ∃j ∈ Di : yi = −1 then
11: return: j

12: abort

We will use the following lemma from [SSS95], which gives concentration bounds for sums of

random variables with limited independence; this concentration behavior makes it possible to use

a random hash function to construct the chain of subsets D0 ⊇ D1 ⊇ . . . ⊇ D⌈logn⌉ that we use to

sample elements.

Lemma 3.2.4 (Concentration under limited independence, [SSS95, Theorem 5, part III]). Let X

be a sum of k-wise independent random variables, each of which is confined to [0, 1], and µ = E[X].

33

If δ ≥ 1 and k ≥ ⌈δµ⌉, then Pr[|X − µ| ≥ δµ] ≤ e−δµ/3.

Proof of Theorem 3.2.2. For each t = 1, . . . , n − 1, let x(t) ∈ Z[n] be the frequency vector of the

stream after t elements have arrived, recording the number of times each integer was present. Let

y(t) = x(t) − 1⃗, the vector that Algorithm 3.2.2 applies sketches to. Since
∑n

i=1 x
(t)
i ≤ t ≤ n − 1,

y has at least one coordinate which is −1. Also note that the set N (t) := {i ∈ [n] : y
(t)
i = −1} is

larger than the set P (t) = {i ∈ [n] : y
(t)
i ≥ 1}. Since x(t) only ever increases with time, we have

N (1) ⊇ N (2) . . . ⊇ N (n−1). On the other hand, P (1) ⊆ . . . ⊆ P (n−1).

Let i⋆ = max(0,
⌈
log(8|P

(n−1)|
s)

⌉
). We will bound the probability that P (n−1) contributes more

than s/2 nonzero coordinates to the region Di⋆ ; in other words, that |Di⋆ ∩ P (n−1)| ≤ s/2. As

Di⋆+1 ⊆ Di⋆ , this event of course implies that for all i ≥ i⋆, |Di ∩ P (n−1)| ≤ s/2. For each

j ∈ P (n−1), let Xj = 1j∈Di⋆
. Since h is drawn from an s-wise independent hash family, the

{Xj}j∈P (n−1) are s-wise independent. By linearity of expectation,

E[Di⋆ ∩ P (n−1)]
∑

j∈P (n−1)

Xj = 2−i⋆ |P (n−1)| ≤ s

8|P (n−1)|
|P (n−1)| ≤ s

8
.

Applying Lemma 3.2.4,

Pr[|Di⋆ ∩ P (n−1)| > s/2] ≤ Pr[
∑

j∈P (n−1)

Xj ≥ 2E[
∑

j∈P (n−1)

Xj] ≤ exp(−1

3

s

8
) ≤ exp(−s/24) . (3.1)

Next, we will bound the probability of the event that there exists some time t at which there

is no value j ≥ i⋆ for which 0 < |N (t) ∩Dj | ≤ s/2. We first address a special case: if |N (t)| ≤ s/8,

then |P (n−1)| ≤ |P (t)| < |N (t)|, so i⋆ = 0. Then setting j = 0 will always work, because 0 < |N (t)| =
|N (t) ∩ D0| ≤ s/8 < s/2. To handle the general case, we will bound, for each level j ≥ i⋆, the

probability that 0 < |N (t) ∩ Dj | ≤ s/2 fails to hold for any t for which s2j

16 ≤ |N
(t)| ≤ s2j

8 . Each

time t ∈ [n− 1] with |N (t)| > s/8 will be covered by the level jt =
⌈
log 8|N(t)|

s

⌉
; note jt ≥ i⋆.

For a given j ≥ i⋆, define Nj↑ to be the largest set in the sequence N (1), . . . , N (n−1) which has

size ≤ s2j

8 , and define Nj↓ to be the smallest set which has size ≥ s2j

16 . Then for each t for which

s2j

16 ≤ |N
(t)| ≤ s2j

8 , we have Nj↓ ⊆ N (t) ⊆ Nj↑. Thus if |Nj↑ ∩Dj | ≤ s/2, and |Nj↓ ∩Dj | > 0, we

will also have 0 < |N (t) ∩Dj | ≤ s/2.
Since E|Nj↑ ∩Dj | ≤ s2j

8 · 2
−j = s/8, applying Lemma 3.2.4 gives

Pr[|Ni↑ ∩Dj | ≥ s/2] ≤ exp(−1

3

s

8
) = exp(−s/24) , (3.2)

and since E|Ni↓ ∩Dj | ≥ s2j

16 · 2
−j = s/16, applying Lemma 3.2.4 gives

Pr[|Ni↓ ∩Dj | ≤ 0] ≤ exp(−1

3

s

16
) = exp(−s/48) . (3.3)

34

Taking a union bound over the probability that |Di⋆ ∩P (n−1)| is too large (Eq. 3.1) or that for

any j ≥ i⋆, that |Nj↑ ∩Dj | ≥ s/2 (Eq. 3.2) or |Nj↓ ∩Dj | ≤ 0 (Eq. 3.3), we find that the probability

of any of these events occurring is

exp(−s/24) + ⌈log n⌉(exp(−s/24) + exp(−s/48)) ≤ 5 log n exp(−s/48) ≤ δ .

If none of these bad events occur, then Algorithm 3.2.2 will always succeed, because the for

loop on Lines 8 to 11 will, before it reaches some i where |Di ∩ (P (t) ∪ N (t))| ≥ s and the sparse

recovery sketch might fail, reach a value i where Di ∩ N (t) ̸= ∅. Then the algorithm successfully

reports an element which is not in the stream. Thus, the probability that the algorithm fails at

any point in the stream is ≤ δ.
Algorithm 3.2.2 uses O(log n) linear sketches, each of whose data can be encoded using O(s log n)

bits of space. The hash function h can be drawn from the s-wise-independent hash family [WC81]

of degree ≤ s-polynomials over the finite field F2⌈logn⌉ and can be encoded using O(s log n) space.

In total, the algorithm uses O((log n)2 log logn
δ) space.

3.3 Random oracle space complexity, adversarial setting

3.3.1 Introducing AVOID

Most of the lower bounds for MissingItemFinding use, as a key step, a reduction from the

following one-way communication problem.

Definition 3.3.1. Let avoid(t, a, b) denote the following one-way communication game.

• Alice is given S ⊆ [t] with |S| = a;

• Bob must produce T ⊆ [t] with |T | = b for which T is disjoint from S.

Strictly speaking, this is not so much a communication problem as an encoding-decoding prob-

lem; Alice must encode a set T disjoint from the given set S.6 The lower bound will follow by a

counting argument.

Lemma 3.3.2. The public-coin δ-error communication complexity of avoid(t, a, b) is bounded thus:

R→
δ (avoid(t, a, b)) ≥ log (1− δ) + log

((
t

a

)/(t− b
a

))
(3.4)

> log (1− δ) + ab/(t ln 2) . (3.5)

6On the other hand, an almost equivalent formulation of avoid(t, a, b) more closely matches the one-way commu-
nication framework. In this variation, Bob is given T ′ ⊆ [t] of size b− 1, and must output some i ∈ [t] \ S \ T ′. The
deterministic (multi-round) communication complexity of this is O(logn), using the protocol from [KN97, Solution
to exercise 5.10]7.

7The protocol is correct, but the solution makes an off-by-one error calculating the number of bits used.

35

Proof of Lemma 3.3.2. Let Π be a δ-error protocol for avoid(t, a, b) and let d = cost(Π) (see

Section 2.1 for the definition). Since, for each input S ∈
(
[t]
a

)
, the error probability of Π on

that input is at most δ, there must exist a fixing of the random coins of Π so that the resulting

deterministic protocol Π′ is correct on all inputs in a set

C ⊆
(
[t]

a

)
, with |C| ≥ (1− δ)

(
t

a

)
.

The protocol Π′ is equivalent to a function ϕ : C →
([t]
b

)
where

• the range size | image(ϕ)| ≤ 2d, because cost(Π) ≤ d, and

• for each S ∈ C, the value T := ϕ(S) is a correct output for Bob, i.e., S ∩ T = ∅.

For any fixed T ∈
([t]
b

)
, the set of all S ∈

(
[t]
a

)
for which S is disjoint from T is precisely the set(

[t]\T
a

)
. The cardinality of this set is exactly

(
t−b
a

)
. Thus, for any subset D of

([t]
b

)
, it holds that∣∣C ∩ ϕ−1(D)

∣∣ ≤ (t−b
a

)
|D|. Consequently,

(1− δ)
(
t

a

)
≤ |C| = |ϕ−1(image(ϕ))| ≤

(
t− b
a

)
| image(ϕ)| ≤

(
t− b
a

)
2d ,

which, on rearrangement, gives Eq. 3.4.

To obtain Eq. 3.5, we note that(
t

a

)/(t− b
a

)
=

t!a!(t− a− b)!
(t− a)!a!(t− b)!

=
t · (t− 1) · · · (t− a+ 1)

(t− b) · (t− b− 1) · · · (t− a− b+ 1)

≥
(

t

t− b

)a

=

(
1

1− b/t

)a

> eab/t , (3.6)

which implies

log (1− δ) + log

((
t

a

)/(t− b
a

))
> log (1− δ) + ab/(t ln 2) .

The lower bound in Lemma 4.3.1 is close to being optimal. We describe a randomized protocol

whose space requirement is larger by only a function of δ:

Lemma 3.3.3. For any t ∈ N, 0 < a+ b ≤ t, and δ ∈ (0, 1), the randomized complexity of solving

avoid(t, a, b) with < δ error is bounded thus:

R→
δ (avoid(t, a, b)) ≤ log

((
t

a

)/(t− b
a

))
+ ln

1

δ
+ 1 . (3.7)

Proof of Lemma 3.3.3. Let z :=
⌈((

t
a

)/(
t−b
a

))
ln 1

δ

⌉
. Using public randomness, choose an ordered

collection R of z subsets of [t] of size b. Alice’s protocol is, given a set S ∈
(
[t]
a

)
, to send the index

j of the first set T in R which is disjoint from S. If there is no such set, Alice sends an arbitrary

value (or aborts). Bob in turn returns the jth element of R.

36

For any S ∈
(
[t]
a

)
, define OS to be the set of subsets in

([t]
b

)
which are disjoint from S; observe

that |OS | =
(
t−a
b

)
. Then the protocol will succeed if R overlaps with OS . The failure probability

is:

Pr [R∩OS = ∅] = Pr

[
R ∈

(([t]
b

)
\ OS

z

)]

=

(((t
b

)
−
(
t−a
b

)
z

)/((t
b

)
z

))
< exp

(
−z
(
t− a
b

)/(t
b

))
◁ by Eq. 3.6

= exp

(
−z
(
t− b
a

)/(t
a

))
≤ exp(− ln

1

δ
) = δ .

The number of bits needed to encode an integer in [z] is:

⌈log z⌉ =
⌈
log

⌈((t
a

)/(t− b
a

))
ln

1

δ

⌉⌉
=

⌈
log
((t
a

)/(t− b
a

))
ln

1

δ

⌉
≤ log

((t
a

)/(t− b
a

))
+ log ln

1

δ
+ 1 .

If we apply Lemma 3.3.3 with δ =
(
t
a

)
, we obtain a protocol with < 1/

(
t
a

)
probability of failure;

by a union bound, it has < 1 probability of failing on any input. By the probabilistic method, it

follows that there exists a deterministic algorithm for avoid(t, a, b) using

≤ log

((
t

a

)/(t− b
a

))
+ log ln

(
t

a

)
+ 1

bits of space. An often more convenient upper bound on the binomial is:(
t

a

)/(t− b
a

)
=

t!(t− a− b)!
(t− a)!(t− b)!

=
t · · · (t− b+ 1)

(t− a) · · · (t− a− b+ 1)

=
b∏

i=0

(
1 +

a

t− a− i

)

≤
(
1 +

a

t− a− b+ 1

)b

≤ exp

(
ab

t− a− b+ 1

)
.

More formally:

Lemma 3.3.4. For any t ∈ N, 0 < a + b ≤ t, the deterministic communication complexity of

solving avoid(t, a, b) is:

≤ log

((
t

a

)/(t− b
a

))
+ log ln

(
t

a

)
+ 1 ≤ ab

(t− a− b+ 1) ln 2
+ log t+ 1 . (3.8)

Equivalently, for z where ⌈log z⌉ is bounded by Eq. 3.8, there exists a collection R1, . . . , Rz of

37

subsets of [t] of size b each so that, for any S ∈
(
[t]
a

)
, there exists an i ∈ [z] with Ri ∩ S = ∅.

We do not know if this result for deterministic algorithms is optimal, or whether one can

outperform the current randomized construction and avoid the additional log ln
(
t
a

)
factor.8

If one takes the complement of each of the subsets R1, . . . , Rz from Lemma 3.3.4, one obtains a

(t, t− b, a)-covering design, using the notation of [GPK95].9. In general, a (v, k, t)-covering design

is a collection of subsets of [v] of size k, so that every set of size t is contained by at least one of

the subsets. The minimum size C(v, k, t) of course has a lower bound of ≥
(
v
t

)
/
(
k
t

)
(by the same

counting argument as for Lemma 3.3.2), although [GPK95] observe that there are slightly stronger

lower bounds; the best known general upper bound for C(v, k, t) also uses the probabilistic method

to get C(v, k, t) ≤ (1 + ln
(
k
t

)
)
(
v
t

)
/
(
k
t

)
. A covering design in which each set of size t is included

in exactly one set of size k would be ideal; these are known as Steiner systems. However, our

algorithm for Algorithm 3.5.2 in Section 3.5 would not be able to use them: it uses the regime

t ≈ v/2, k ≈ (1 − ε)v, where any two subsets in the covering design will contain a set of size t in

their intersection; thus such a Steiner system can not exist for avoid(v, v/2, εv) protocols.

3.3.2 Lower bound: reduction from AVOID

This lower bound uses a trick that is common to many of the mif lower bounds: if an algorithm

for mif is adversarially robust with tracking error δ, one can (with ≥ 1− δ probability) recover not
just one, but any number t ≤ ℓ distinct new elements by repeatedly querying the algorithm for an

output, and passing that output back to the algorithm as its next input.

Theorem 3.3.5. Any algorithm which solves mif(n, ℓ) against adaptive adversaries with error δ

requires ≥ log(
(

n
⌈ℓ/2⌉

)
/
(n−⌈ℓ/2⌉
⌊ℓ/2⌋+1

)
) + log(1− δ) bits of space; or less precisely, Ω(ℓ2/n+ log(1− δ)).

Proof of Theorem 3.3.5. We prove this by reducing the communication task avoid(n, ⌈ℓ/2⌉, ⌊ℓ/2⌋+
1) to mif(n, ℓ).

Say Alice is given the set A ⊆ [n] of size ⌈ℓ/2⌉. Alice instantiates an instance X of the given

algorithm for mif(n, ℓ), and runs it on the partial stream of length ⌈ℓ/2⌉ containing the elements

of A in some arbitrary order. Alice then sends the state of X to Bob; since this is a public coin

protocol, all randomness can be shared for free. Bob then runs the following adversary against

X ; it queries X for an element b0, and then sends that element back to X to be its next input,

repeating this process ⌊ℓ/2⌋ + 1 times to recover elements b0, b1, . . . , b⌊ℓ/2⌋. The instance will fail

to give correct answers to this adversary with total probability ≤ δ. If it succeeds, then by the

definition of the Missing Item Finding problem, b0 /∈ A, b1 /∈ {b0} ∪A, b2 /∈ {b0, b1} ∪A, and so on;

8There is a simple lower bound of ≥ log(a + 1), which exactly matches the upper bound if (a + 1)b ≤ t. This
suggests that it may be possible to shave the log log t part of log ln

(
t
a

)
= O(log a+ log log t).

9The book [CD07] uses the name t-(v, k, 1)-covering for (v, k, t)-covering designs

38

thus Bob can report B := {b0, . . . , b⌊ℓ/2⌋+1} as a set of ⌊ℓ/2⌋ + 1 elements which are disjoint from

A.

This avoid protocol implementation uses the same number of bits of communication as X does

of space. By Lemma 3.3.2, it follows X needs space:

≥ log

((
n

⌈ℓ/2⌉

)
/

(
n− ⌊ℓ/2⌋ − 1

⌈ℓ/2⌉

))
+ log(1− δ)

≥ ⌈ℓ/2⌉(⌊ℓ/2⌋+ 1)

n ln 2
+ log(1− δ) ≥ ℓ2

4n ln 2
+ log(1− δ) .

3.3.3 Upper bound: the hidden list algorithm

In this section we describe a random oracle algorithm for mif(n, ℓ) in the adversarial setting, which

uses its oracle-type access to random bits to keep track of a random list L of outputs that it might

give, but which the adversary cannot easily learn. The design is simple: Algorithm 3.3.1 uses

oracle randomness to pick a list L of ℓ + 1 distinct elements uniformly at random, and then on

being queried outputs the first element of L which is still available. Because the list L is chosen

uniformly at random, the adversary has no significant advantage in predicting the available elements

of the list. There is one exception: the adversary always knows what the available element with

the lowest index is, since this is what the algorithm outputs output. As a result, the adversary at

each point only has a choice between an “echo” strategy of returning the algorithm’s last output,

and a “guess” strategy of picking some new random element in [n].10 Algorithm 3.3.1 only needs

space to record which elements of L were already in the input; to handle the echo strategy, it keeps

a counter which marks a prefix of L that has been used; and to handle the guess strategy, it stores

a set J of correctly guessed elements in L (which one can prove will have size O(1 + ℓ2/n) with

high probability).

Figure 3.4: This diagram shows the behavior of Algorithm 3.3.1 on an example input. The top
row of squares corresponds to the set [n], ordered so that the leftmost squares corresponds to
the elements L1, L2, . . ., Lℓ+1 from Algorithm 3.3.1. In the top row, cells contain a pink dot if
the corresponding element has already been seen in the stream. In the bottom row, the letter C
indicates the cell corresponding to Lc. Cells that are shaded dark blue indicate the values contained
in J . The third cell from the left is included in J because, at the time the element L3 was added
by the adversary, c was less than or equal to 2.

10Against this algorithm, an adversary has nothing to gain by repeating an input, so we can assume all inputs are
distinct.

39

Theorem 3.3.6. Algorithm 3.3.1 solves mif(n, ℓ) against adaptive adversaries, with error δ, and

can be implemented using O(min(ℓ,
(
1 + ℓ2

n + ln 1
δ

)
· log ℓ)) bits of space. (It requires oracle access

to (ℓ+ 1) log n random bits.)

Algorithm 3.3.1 Adversarially robust, random oracle algorithm for mif(n, ℓ) with error ≤ δ

Let t = min(ℓ,
⌈
3 ℓ2

n + ln 1
δ

⌉
)

Initialization:
1: Let L = {L1, . . . , Lℓ+1} be a fixed sequence of elements in [n]ℓ+1 without repetitions, chosen

uniformly at random. ▷ With oracle access to O(ℓ log n) random bits, the value of L can be
computed on demand, instead of stored.

2: c← 1, an integer in the range {1, . . . , ℓ+ 1}
3: J ← ∅, a subset of {L1, . . . , Lℓ} of size ≤ t

Update(e ∈ [n]):
4: while e = Lc or Lc ∈ J do
5: c← c+ 1

6: if e ∈ {Lc+1, . . . , Lℓ} then
7: J ← J ∪ {e}
8: if |J | > t then
9: abort

Query:
10: output: Lc

Proof of Theorem 3.3.6. First, we observe that the only way that Algorithm 3.3.1 can fail is if it

aborts. At any point in the stream, the set J includes the intersection of the earlier elements from

the stream, with the list {Lc+1, . . . , Lℓ} of possible future outputs. The while loop ensures that the

element Lc emitted will neither be equal to the current element nor collide with any past stream

elements (those in J). It is not possible for c to go out of bounds, because each element in the

stream can lead to an increase in c of at most one; either immediately when the element arrives,

if e = Lc; or delayed slightly, if e ∈ {Lc+1, . . . , Lℓ}. Since the stream contains ℓ elements, c will

increase by at most ℓ, to a value of ℓ+1. Note that if c has reached the value ℓ+1, then the entire

stream was a permutation of {L1, . . . , Lℓ}, making Lℓ+1 is a safe output.

This algorithm needs log(ℓ + 1) bits to store c, but the main space usage is in storing J . We

will show that |J | ≤ t with probability ≥ 1− δ, in which case J can be stored as either a bit vector

of length ℓ, or a list of ≤ t indices in [ℓ], using O(min(ℓ, t log ℓ)) bits of space.

We observe that after i−1 elements have been received (and up to i distinct elements emitted),

the probability that the ith element chosen by the adversary will be newly stored in J will be

≤ 2 ℓ
n , no matter what the earlier elements were or what the adversary picks. If ℓ ≥ n/2, this is

40

immediate. Otherwise, write Ei−1 for the set containing the first i−1 elements of the stream, ei for

the ith element, and let ci be the value of the variable c as of Line 6. Let Xi denote the indicator

random variable for the event that ei was not in J before, but has been added now.

Because the adversary has only been given outputs deriving from L≤ci := (L1, . . . , Lci), if

we condition on the random variable L≤ci , then the element ei and set Ei−1 are independent

of L>ci := {Lci+1, . . . , Lℓ}. Given Ei−1, the values X1, . . . , Xi−1 determine whether or not each

element of Ei−1 is in L>ci . Then, conditioning on L≤ci , ei, Ei−1, and X1, . . . , Xi−1, we have that

L>ci \Ei−1 is a set of size ℓ− ci− |L>ci ∩Ei−1| chosen uniformly at random from [n] \L≤ci \Ei−1.

Thus, if ei /∈ L≤ci∪Ei−1, the probability that Xi = 1 is precisely the probability that ei is contained

in L>ci \ Ei−1, so:

Pr
[
Xi = 1 | (Xj)

i−1
j=1, ei, Ei−1, L≤ci , {ei /∈ L≤ci ∪ Ei−1}

]
=
ℓ− ci − |L>ci ∩ Ei−1|
n− ci − |Ei−1 \ L≤ci |

≤ ℓ− ci
n− ci − ℓ

≤ ℓ

n− ℓ
≤ 2ℓ

n
.

On the other hand, the event ei ∈ L≤ci ∪ Ei−1, implies Xi = 0 always. Together, these imply

Pr[Xi = 1 | (Xj)
i−1
j=1] ≤ 2ℓ/n.

Then applying the (modified, see Lemma 2.3.1) Azuma’s inequality bound, we find that with

z := max{1, 3n
2ℓ2

ln 1
δ}:

Pr[
∑
i∈[ℓ]

Xi ≤
2ℓ2

n
(1 + z)] ≤ e−

z
2+z

z 2ℓ2

n

≤ e−z 2ℓ2

3n since z ≥ 1

≤ e− ln 1
δ = δ . since z ≥ 3n

2ℓ2
ln

1

δ

This implies that the probability that |J | exceeds 2ℓ2/n+ 3 ln(1/δ) will be ≤ δ. Consequently, our
bound for the total space usage of the algorithm is:

O(log ℓ) +O(min(ℓ,

(
ℓ2

n
+ ln

1

δ

)
log ℓ))

= O(min(ℓ,

(
1 +

ℓ2

n
+ ln

1

δ

)
· log ℓ)) .

While it is possible to reduce the space usage of Algorithm 3.3.1 by removing all elements from

the set J that are less or equal than c, this only changes the constant factor.

41

3.4 Zero-error model variant

As in the adversarial setting (see Section 3.3.2), in the zero-error static setting one can iteratively

extract from an algorithm ℓ/2 distinct elements that were not in the original input.11 We use this

property to reduce avoid to mif, and obtain:

Theorem 3.4.1. All algorithms solving mif(n, ℓ) with zero error on any stream require Ω(ℓ2/n)

bits of space, in expectation over the randomness of the algorithm.

Proof of Theorem 3.4.1. First, we prove that if there is a zero-error algorithm Φ for mif(n, ℓ) using

exactly s bits, in expectation, then there is a communication protocol for avoid(n, ⌈ℓ/2⌉, ⌊ℓ/2⌋+1)

using prefix-encoded messages with an expected length of s bits. The construction is the same as

for Theorem 3.3.5. Alice, on being given a set A ⊆ [n] of size ⌈ℓ/2⌉, initializes an instance X of Φ,

and runs it on an input stream α of length ⌈ℓ/2⌉ containing each element of A in some arbitrary

order. Any random bits used by X are shared publicly with Bob. Alice sends the encoding of

X’s state to Bob, who queries X to find an element b0 /∈ α, updates X with b0, queries it to find

b1 /∈ α ∪ {b0}, and so on until Bob has recovered B = {b0, . . . , b⌊ℓ/2⌋}. Because the algorithm is

guaranteed to never fail on any input stream, it must in particular succeed on Bob’s adaptively

chosen continuation of α. This ensures that B ∩A = ∅ holds with probability 1.

Next, we prove that any zero error randomized communication protocol Π for avoid(t, a, b)

requires ≥ ab/(t ln 2) bits in expectation. Following the argument of Lemma 3.3.2, we observe that

there must exist a fixing of the public randomness of Π for which the expected number of bits used

when inputs A are drawn uniformly at random from
(
[t]
a

)
, is at least as large as when Π is run

unmodified. Let Υ be the deterministic protocol with this property, and let M be the set of all

messages sent by Υ. Each message m ∈ M has a length |m|, probability (over the random choice

of A) pm of being sent, and makes Bob output the set Bm. For all m ∈M , we have:

pm = Pr[m is sent] ≤ Pr[Bm is a correct output] = Pr[A ∩Bm = ∅] ≤
(
t− a
b

)
/

(
t

a

)
≤ 2−

ab
t ln 2 .

Let Υ(A) ∈M be the message sent by Υ for a given value of A. Then the entropy

H(Υ(A)) =
∑
m∈M

pm log
1

pm
= E

A∈([t]a)
log

1

pΥ(A)
≥ E

A∈([t]a)
ab

t ln 2
=

ab

t ln 2
.

11This trick works in the zero-error static setting, not just the zero-error adversarial setting, because the zero-error
models ensure the algorithm output will always be correct. In the zero-error static setting, it is space usage that is
only measured against fixed streams, not correctness; and the protocol for avoid that our proof describes will prepare
the algorithm state using a fixed stream, not an adversary, so the expected message length will be bounded by the
zero-error static cost of the algorithm. If we had adaptively prepared the algorithm state for the message, this would
not have worked.

42

By the source coding theorem [Sha48, Sec. 9],

E
A∈([t]a)

E|Υ(A)| ≥ H(Υ(A)) ≥ ab

t ln 2
.

Applying the above lower bound to the task avoid(n, ⌈ℓ/2⌉, ⌊ℓ/2 + 1⌋), we conclude that Φ

requires ≥ ℓ2

4n ln 2 bits of space in expectation.

Theorem 3.4.2. There is an algorithm solving mif(n, ℓ) with zero error against adaptive adver-

saries, which uses O((1 + ℓ2/n) log ℓ) bits of space, in expectation over the randomness of the

algorithm.

Proof of Theorem 3.4.2. We use a slight variation of Algorithm 3.3.1, in which internal parameter

t is instead set to ℓ. This ensures that the algorithm will never abort; the proof of Theorem 3.3.6

has established that Algorithm 3.3.1 will then always give a correct output for the mif(n, ℓ) task.

The counter c can be encoded in binary using at most ⌈log(ℓ+ 1)⌉ bits. We encode the set J

by concatenating the binary value of |J |, followed by the binary values of the indices i1, . . . , i|J | in

[ℓ] for which Lik is equal to the kth smallest element of J . (As both the encodings of c and J are

prefix codes, so too is the encoding of the algorithm’s state formed by concatenating them.) The

total space S used by the algorithm (excluding random bits) is then:

S = ⌈log(ℓ+ 1)⌉+ ⌈log ℓ⌉(1 + |J |) .

As in the proof of Theorem 3.3.6, let Xi be the indicator random variable for the event that the

ith element that the adversary chooses for the stream is stored in J ; we showed that for all i ∈ [ℓ],

Pr[Xi = 1 | Xi−1, . . . , X1] ≤ ℓ−1
n , which implies E[Xi] ≤ ℓ−1

n . By linearity of expectation,

ES = ⌈log(ℓ+ 1)⌉+ ⌈log ℓ⌉

1 + E
∑
i∈[ℓ]

Xi


≤ ⌈log(ℓ+ 1)⌉+ ⌈log ℓ⌉

(
1 +

ℓ(ℓ− 1)

n

)
= O((1 +

ℓ2

n
) log ℓ) .

Say one has a randomized streaming algorithm A in the static or adversarial settings, with the

property that it either produces a correct output or aborts. Most of the algorithms presented in

this chapter can be modified to do this. To convert A to a zero-error algorithm, one must only

cover for the cases where A aborts, using some fallback method to ensure that a correct output

is always made. Since the risk of aborting can often be driven very low with suitable parameter

choices, the expected cost of this fallback is dominated by the expected cost in the event that the

43

fallback does not need to be used. Using a lot of space in the event that A aborts is acceptable, as

this has little impact on the expected space cost.

Theorem 3.4.3. Let B be a zero-mistake (Definition 2.2.2) algorithm solving mif(n, ℓ) with ≤
1/ℓ error in the static (or adversarial) settings, implemented as a random tape, seed, or or-

acle algorithm, with worst-case space usage S. Then there is a zero-error static (or adversar-

ial) algorithm with the same randomness type solving mif(n, ℓ) with zero error that uses at most

S +O((1 + ℓ2/n) log ℓ) bits of space in expectation, on any input stream (or adversary).

Algorithm 3.4.1 Extending a non-guessing algorithm B for mif(n, ℓ) to have zero error

Require: ℓ ≤ n/32, ℓ ≥ 2; otherwise use Algorithm 3.1.1
Let t = max(

⌈
32ℓ2/n

⌉
, ⌈10 log ℓ⌉)

Let w = min(ℓ, ⌊n/8ℓ⌋)

Initialization:
1: B ← instance of B parameterized for mif(n, ℓ)
2: For i ∈ [8ℓ], define Hi := {(i− 1)w + 1, . . . , iw}
3: F ∈R

(
[8ℓ]
t

)
be a random subset ▷ uses O(t log ℓ) space

4: x← (1, . . . , 1) be a vector in {0, 1}F
5: ▷ Y is stored using variable-length encoding, using O(1 + |Y | log(tw)) bits in total
6: Y ← ∅ a subset of F × [w]

Update(e ∈ [n]):
7: if B has not yet failed then
8: B.Update(e)

9: if ∃j ∈ F for which e ∈ Hj then
10: if

∑
i∈F xi >

t
2 then

11: xj ← 0
12: else
13: Let k = e− (j − 1)w
14: Y ← Y ∪ {(j, k)}

Query:
15: if B has not yet failed then
16: return B.Query()
17: else
18: Let j, k ∈ F × [w] be indices where xj = 1 and (j, k) /∈ Y .
19: return (j − 1)w + k

Proof of Theorem 3.4.3. We describe a new algorithm which uses B as a subroutine in Algo-

rithm 3.4.1. The additional code requires only a random seed (not random tape or oracle). We

assume (at the cost of using ≤ 1 additional bit) that B tracks whether or not it has failed, and

44

only fails during its Update step, not when its output is queried. The worst-case (over possible

streams/adversaries) probability that B fails is ≤ 1/ℓ.

If the instance B of B does not fail, then Algorithm 3.4.1 will return correct output. If B does

fail, the output of the algorithm will be determined by the additional logic (Lines 9 to 14 for the

update, and Lines 18 to 19 for querying.) Let E ⊆ [n] be the set of inputs. There are two cases:

first, if E intersects < t/2 of the sets in {Hi}i∈F , then the array x will be 1 at coordinate j iff

E ∩Hj = ∅; and also Y = ∅. Then Line 18 will choose a value j for which E ∩Hj = ∅, so that for

all possible values of k ∈ [w], (j − 1)w + k ∈ Hj and hence the algorithm output is not in E. For

the second case, we have that E intersects ≥ t/2 of the sets in {Hi}i∈F . Then for each j ∈ F , if
xj = 1, the set Y will contain coordinates for all integers which lie in Hj ∩ E. Consequently, Line

18 will choose coordinates (j, k) for which the associated integer (j − 1)w + k is in Hj \ E. It is

guaranteed that at least one such pair of coordinates exists, because there are ≥ t/2 values in F

with xj = 1, and for each value there are w possible values of k; meanwhile,

wt/2 ≥ 1

2
min(ℓ,

⌊ n
8ℓ

⌋
)max(4,

⌈
32ℓ2

n

⌉
) ≥ 1

2

ℓ · 4 ℓ ≥
√
n/8⌊

n
8ℓ

⌋⌈
32ℓ2

n

⌉
otherwise

≥ 2ℓ > ℓ ≥ |E| ,

so E cannot possibly cover all pairs.

We now address the expected space usage of the algorithm. In any case, the variable B will

use S +O(1) bits of space; the variable F , O(t log ℓ) bits; and the variable x, O(t) bits. For Y , we

again have two cases. Let L be the event that, at the end of the stream, the set E of all inputs

intersects ≥ t/2 of the sets in {Hi}i∈F . If L does not occur, then the set Y will be empty, and can

be encoded to add only O(1) bits to the length of the space encoding. Otherwise, if L occurs, Y

will in the worst case add |F |w ·O(log tw) = O(tw log tw) bits of space.

We now bound the probability that the event L occurs and B does not fail. If B does not

fail, then the algorithm will output using Line 16, and will never reveal the value of F to the

algorithm. Consequently, the set E of inputs for the algorithm will be entirely independent of F .

For all i ∈ [8ℓ], define {0, 1} random variable Xi = 1i∈F . Note E[Xi] = t/8ℓ. Since the collection

{Xi}i∈[8ℓ] is negatively associated, by Lemma 2.3.3, no matter which collection of sets {Hi}i∈A is

intersected by E:

Pr[L ∧B succeeds] ≤ max
A⊆[8ℓ],|A|≤ℓ

Pr
[∑
i∈A

Xi ≥ t/2
]
≤ max

A
exp

(
− 32

(2 + 3)(1 + 3)
t/2
)

≤ exp
(
− 9

40
t
)
≤ exp

(
− 9

40
⌈10 log ℓ⌉

)
≤ 1

ℓ
.

45

The expected space usage of the algorithm is, since tw = O(ℓ log ℓ)

S +O(t log ℓ) + Pr[L]O(tw log tw)

≤ S +O(t log ℓ) + (Pr[L ∧B succeeds] + Pr[B fails])O(tw log tw)

≤ S +O(t log ℓ) +
(1
ℓ
+

1

ℓ

)
O(tw · log tw)

≤ S +O

((
ℓ2

n
+ log ℓ

)
log ℓ+

1

ℓ
O(ℓ log ℓ · logO(ℓ log ℓ)

)
≤ S +O

((
ℓ2

n
+ log ℓ

)
log ℓ

)
.

3.5 Deterministic space complexity

3.5.1 Lower bound: an embedded instance of AVOID

The following lower bound for deterministic algorithms for mif(n, ℓ) works by showing that, if an

algorithm uses too little space, then the set of possible future outputs must shrink geometrically as

time progresses, leading to a contradiction once there are fewer possible outputs than the number

of remaining inputs in the stream. For any partial stream σ ∈ [n]⋆ of length |σ|, let Fσ be the set

of all possible outputs made at time ℓ for streams that start with with σ. A direct consequence of

the definition is that if partial stream ρ is a prefix of σ, then Fρ ⊇ Fσ. We also have the property

that, given only the state v that the algorithm will be in after processing some γ ∈ [n]⋆, one can

determine Fγ using only v and the value of ℓ − |γ| (and, of course, knowledge of the algorithm).

Consequently, the number of possible output sets Fσ is limited by (mainly) the number of states of

the algorithm.

The key observation of the proof is that, if an algorithm uses z bits of space, then for any σ ∈ [n]⋆

one can find a partial stream ρ which extends σ by t = O(z) elements, for which |Fρ|/|Fσ| ≤ 1
2 . This

can be proven as a consequence of the lower bound for the avoid communication problem (Defini-

tion 3.3.1); in short, using the algorithm we can construct a z-bit protocol for avoid(|Fσ|, t, 12 |Fσ|),
wherein Alice sends a message encoding a state of the algorithm and Bob computes the set of

possible outputs for that state. By Lemma 3.3.2, this protocol must use z = Ω(t) bits of space.

Theorem 3.5.1. Every deterministic streaming algorithm for mif(n, ℓ) requires Ω(
√
ℓ+ ℓ

1+log(n/ℓ))

bits of space.

Proof of Theorem 3.5.1. Let Σ be the set of states of the algorithm, and let sinit be the initial state.

Let τ : Σ×[n]⋆ 7→ Σ be the (iterated) transition function of the algorithm, where τ(s, (e1, . . . , ek)) =

x means that if the algorithm is at state s, and the next k elements in the stream are e1, . . . , ek, then

after processing those elements the algorithm will reach state x. For each partial stream σ ∈ [n]⋆,

abbreviate τ(sinit, σ) as Σ[σ]. For each state s ∈ Σ, we associate the output ωs ∈ [n] which the

46

s00 s01 s10 s11

Gs,2 1

1

1 1

1 1

1 1

2

2 2

2

2

2 22

3

3

3

3

3

3

3 3

4

4

4

4

4

4

4 4

Gs,1

Gs,0

Figure 3.5: In the proof of Theorem 3.5.1, the quantities Fσ (defined in Eq. 3.9) are entirely
determined by the values of Σ[σ] and ℓ − |σ|. More precisely, we have Fσ = GΣ[σ],ℓ−|σ|, where
Gs,i := {ωx : ∃α ∈ [n]i : τ(s, α) = x}. This diagram shows the values of Gs,i for Algorithm 3.1.1
solving the mif(4, 2) problem. The sets Gs,i are represented by the dark squares in the array of
four cells. The transition function between states is indicated by the colored arrows; for example,
green colored arrows (those emitting from squared numbered with a 3) correspond to transitions
where the next stream element is a 3, i.e, from state s to state s′ = τ(s, 3).

algorithm would emit if the state is reached at the end of the stream. (If there is no stream of

length ℓ leading to state s, we let ωs be arbitrary.)

For each partial stream σ ∈ [n]⋆, let

Fσ = {i : ∃x ∈ Σ, ∃α ∈ [n]ℓ−|σ| : τ(Σ[σ], α) = x ∧ ωx = i} (3.9)

be the set of possible outputs of the algorithm when σ is extended to a stream of length ℓ. Because

there are only |Σ| states, and only [n] possible output values, |F i
s | ≤ m, where m = min(|Σ|, n).

Let t, q be integers chosen later, so that

tq ≤ ℓ−m/2q . (3.10)

We claim that there exists a partial stream σ ∈ [n]⋆ satisfying ∀α ∈ [n]t : |Fσ.α| ≥ 1
2 |Fσ|.

Such a state can be found by an iterative process. Let τ0 be the empty stream ε; for i =

0, 1, 2, . . ., if there exists α ∈ [n]t for which |Fτi.α| ≤ 1
2 |Fτi |, let τi+1 = τi.α. Otherwise, stop,

and let σ = τi. This process must terminate before i = q, because otherwise we would have

|Fτq | ≤ m/2q ≤ ℓ− qt. Then letting γ ∈ [n]ℓ−qt be a sequence of elements containing every element

of Fτq , we observe that the algorithm cannot possibly output a correct answer for the stream τq.γ.

By the definition of Fτq , we must have ωτq .γ ∈ Fτq ; but to be a correct missing item finding solution,

we need ωτq .γ /∈ γ, hence ωτq .γ /∈ Fτq , a contradiction. Thus, σ = τi for some i ≤ q − 1. Thus

|σ| ≤ (q − 1)t ≤ ℓ − t, which ensures that the terms σ.α are streams of length ≤ ℓ and therefore

well defined. Finally, the stopping condition of the process implies ∀α ∈ [n]t : |Fσ.α| ≥ 1
2 |Fσ|.

We will now construct a deterministic protocol for avoid(|Fσ|, t,
⌈
1
2 |Fσ|

⌉
) using ≤ log |Σ| bits of

communication. Alice, on being given a set A ∈
(
Fσ

t

)
, arbitrarily orders it to form a sequence α in

47

(Fσ)
t; and then sends the state s′ = τ(Σ[σ], α) to Bob. This can be done using log |Σ| bits of space.

Bob uses the encoded state to find Fσ.α, by evaluating ωτ(s′,β) for all sequences β ∈ [n]|σ|−t, and

reports the first
⌈
1
2 |Fσ|

⌉
elements of this set as B. This protocol works because as claimed above,

we are guaranteed |Fσ.α| ≥ |Fσ|; and furthermore, Fσ.α must be disjoint from A; if it is not, then

there exists some continuation of σ concatenated with α which leads the algorithm to a state z with

ωz ∈ A, contradicting the correctness of the MIF protocol. Finally, applying the communication

lower bound from Lemma 3.3.2, we find

log |Σ| ≥ 1

ln 2
t

⌈
1

2
|Fσ|

⌉
/|Fσ| ≥ t/(2 ln 2) . (3.11)

We now determine values of t and q satisfying Eq. 3.10. We can set

q = ⌈1 + log(m/ℓ)⌉ and t =

⌊
1

q

(
ℓ− m

2q

)⌋
.

We must have m ≥ ℓ + 1, as otherwise |Fε| ≤ m ≤ ℓ, in which case we could easily make the

algorithm give an incorrect output by running it on a stream γ ∈ [n]ℓ which contains all elements

of Fε. Thus log(m/ℓ) ≥ 0, and hence q ≥ 1, making t well defined. Since m = min(|Σ|, n), we are

also guaranteed log |Σ| ≥ log(ℓ+ 1). Combining this with Eq. 3.11 gives:

log |Σ| ≥ max

(
log(ℓ+ 1),

1

2 ln 2

⌊
1

q

(
ℓ− m

2q

)⌋)
≥ max

(
1,

1

2 ln 2

⌊
ℓ

2q

⌋)
since 2q ≥ 2m/ℓ and ℓ ≥ 1

≥ 1

1 + 2 ln 2
· ℓ
2q

since min(1, (z − 1)/y) ≥ z

1 + y

≥ ℓ

10 + 5 log(m/ℓ)
. since 1 + 2 ln 2 ≤ 5/2 (3.12)

As m = min(|Σ|, n), we have m ≤ |Σ|, so

log |Σ| ≥ ℓ/5

2 + log |Σ| − log ℓ
=⇒ (log |Σ|)2 + (2− log ℓ) log |Σ| − ℓ/5 ≥ 0 .

Solving the quadratic inequality gives:

log |Σ| ≥

√
ℓ

5
+

(
1− log(ℓ)

2

)2

−
(
1− log(ℓ)

2

)
≥


√
ℓ/5 if ℓ ≥ 4

0 otherwise

As log |Σ| ≥ log(ℓ+ 1) ≥
√
ℓ/5 also holds for ℓ ≤ 4, it follows that log |Σ| ≥

√
ℓ/5 for all values of

48

ℓ. Combining this result, Eq. 3.12, and the inequality m ≤ n, we conclude:

log |Σ| ≥ max

(√
ℓ

5
,

ℓ

10 + 5 log(n/ℓ)

)
= Ω

(√
ℓ+

ℓ

1 + log(n/ℓ)

)
.

Note: instead of associating “forward” looking sets of outputs Fs with each state s ∈ Σ, we could

instead use “backward” looking states Bs defined (roughly) as [n]\{i : ∃σ leading to s with i ∈ σ}.

3.5.2 Upper bound: filtering by coordinates

We will present a deterministic algorithm that comes close to the lower bound for mif(n, ℓ). The

algorithm will remap all values from [n] to [s]t for some integers s and t. It will proceed in t stages;

in the ith stage, it records the set of ith coordinates of inputs that arrived during the ith stage,

until there is one “safe” value remaining for the ith coordinate, that no input from this stage has

used. The output of the algorithm will be a remapped value in [s]t which matches known “safe”

values on coordinate 1 through i, and has an arbitrary value on coordinates i + 1 through t; this

output will differ from every input seen so far on at least one coordinate.

Figure 3.6: This diagram shows the behavior of Algorithm 3.5.1, with s = 5 and t = 2, on an
example input. The pink circles and diamonds mark the elements currently covered by the stream.
Cells shaded dark gray are those which are no longer possible outputs due to the current values of
k and a. Cells shaded light green are no longer possible outputs due to the value of the vector x.
Cells shaded white are possible output values. The algorithm proceeds in t phases; in this example,
for the first phase, it maintained a bit vector tracking which of the s rows of the set [n] contained
an element from the stream; after the first five elements (1, 10, 11, 17, 24 in some order) arrived,
only one row was left available, and the algorithm proceeded to the second phase – maintaining a
bit vector x that records which columns within the chosen row may be unavailable.

Theorem 3.5.2. Algorithm 3.5.1 is a deterministic algorithm that solves mif(n, ℓ) using

O(
√
ℓ log ℓ+ ℓ log ℓ

logn) bits of space.

Proof of Algorithm 3.5.1. First, we establish that the variables (k, a) of the algorithm stay in their

specified bounds. The condition in Line 5 ensures that k will not be increased beyond t. At the

49

Algorithm 3.5.1 A deterministic algorithm for mif(n, ℓ)

Let s, t be integers satisfying st ≤ n, and t(s− 1) ≥ ℓ.

Initialization:
1: x← (0, . . . , 0) is a vector in {0, 1}s.
2: (k, a)← (1, 0) is an element of

⋃
j∈[t]{j} × {0, . . . , sj − 1}

Update(e ∈ [n]):
3: Let i←

(⌊
(e− 1)/sk−1

⌋
mod s

)
+ 1

4: xi ← 1
5: if k < t and there is exactly one y ∈ [s] : xy = 0 then
6: x← (0, . . . , 0)
7: k ← k + 1
8: a← a+ (y − 1)sk−1

Query:
9: Let i be the least value in [s] for which xi = 0

10: output: a+ (i− 1)sk−1 + 1

time Line 8 is executed, a < sk−1; since y ∈ [s], it follows a+ (y− 1)sk−1 < (1 + (s− 1))sk−1 ≤ sk,
so the pair (k, a) stays in

⋃
j∈[t]{j} × {0, . . . , sj − 1}.

Next, we establish that the algorithm is correct; that the output from Line 10 does not overlap

with current stream e1, . . . , ek. For each element ej in the stream, let kj be the value of k at the

time the element was added (i.e., at the start of the Update function). For all h ∈ [t], define

Ch := {j ∈ [t] : kj = h} to indicate the elements for which kj = h. Because Line 5 only triggers

when x has one zero entry, and x is reset to the all zero vector immediately afterwards, and each

new element sets at most one entry of x to 1 (Line 4), we have |Ch| ≥ s − 1 for all h less than or

equal to the current value of k.

Let c = a + (i − 1)sk−1 be the current output of the algorithm (Line 10), minus 1. Note that

c ≤ st − 1 ≤ n − 1, so the output is in [n]. The value of c can be written in base s as (c1, . . . , ct),

so that c =
∑t

j=1 cjs
j−1. For h less than the current value of k, ch is equal to the value of y at the

time the condition of Line 5 evaluated to true; in other words, at that time, xch = 0. Now, for each

j ∈ Ch, consider the value ej − 1 written in base s as (b1, . . . , bt). When ej was added, Line 3 set i

equal to bh, and so Line 4 ensured xbh = 1. Since xch = 0 held afterwards, when the condition of

Line 5 evaluated to true, it follows bh ̸= ch. This implies ej − 1 ̸= c holds for all j ∈ Ch. A similar

argument will establish that for j ∈ Ck, we have ej − 1 ̸= c; since C1 ∪ . . . ∪Ck contains the entire

stream so far, it follows the current output of the algorithm does not equal any of the {ej}kj=1, and

is thus correct.

Finally, we determine values of s and t which for which the algorithm uses little space. The

vector x can be stored using s bits; since there are
∑t−1

i=0 s
i ≤ st possible values of (k, a), this

50

algorithm can be implemented using ≤ s+ t log s+ 1 bits of space.

Now let

q = min
(√

ℓ log(ℓ+ 1), log n
)

and t =

⌊
q

log(ℓ+ 1)

⌋
and s =

⌈
ℓ

t

⌉
+ 1 ,

Because ℓ ≥ log(ℓ + 1), and log n ≥ log(ℓ + 1), it follows t ≥ 1. This implies s ≤ ℓ + 1. Then

t(s− 1) = t⌈ℓ/t⌉ ≥ ℓ, and

st ≤ (ℓ+ 1)⌊q/ log(ℓ+1)⌋ ≤ (ℓ+ 1)q/ log(ℓ+1) ≤ 2q ≤ n ,

so the values of s and t satisfy the required conditions st ≤ n and t(s − 1) ≥ ℓ. With these

parameters, the space usage of the algorithm is:

s+ t log s+ 1 ≤
⌈
ℓ

t

⌉
+ 2 +

⌊
q

log(ℓ+ 1)

⌋
log(

⌈
ℓ

t

⌉
+ 1)

≤ ℓ

⌊q/ log(ℓ+ 1)⌋
+ 3 +

q

log(ℓ+ 1)
log(ℓ+ 1)

≤ 2ℓ log(ℓ+ 1)

q
+ q + 3

= max

(
2
√
ℓ log(ℓ+ 1),

2ℓ log(ℓ+ 1)

log n

)
+min

(√
ℓ log(ℓ+ 1), log n

)
+ 3

= O

(√
ℓ log ℓ+

ℓ log ℓ

log n

)
.

3.5.3 Upper bound: using AVOID protocols to improve efficiency

Algorithm 3.5.1 does not perfectly match the structure of the lower bound in Theorem 3.5.1; for

ℓ = nΘ(1), it uses Θ(log ℓlogn) = Θ(1) stages, while the lower bound uses Θ(log 2n
ℓ). We will describe a

deterministic algorithm that can use less space than Algorithm 3.5.1; however, this new algorithm

has not been optimized for time. Instead of repeatedly finding a single safe coordinate, it repeatedly

finds a safe subset of some previous, larger safe subset, using a deterministic protocol for avoid.

Theorem 3.5.3. There is a deterministic algorithm (Algorithm 3.5.2) for mif(n, ℓ) using space:

O

(
ℓ log log 4n

ℓ

log 4n
ℓ

+
√
ℓ log ℓ

)
.

See Figure 3.7 for an example of how Algorithm 3.5.2 runs on an example input.

Proof of Theorem 3.5.3. Consider the algorithm described in Algorithm 3.5.2. We will choose spe-

cific parameters h and v for it later. This algorithm proceeds in h+ 1 stages, numbered 0 through

h. In the tth stage, the set [v(2h)h+1] of possible algorithm outputs is split into disjoint “blocks”

51

Inputs: black squares:

blue: blocks j with xj=0 that are excluded from Ri1

gray: blocks outside range(S)

Current output value:

arrow
 of tim

e

i=0

i=1

i=6

i=7

i=8

i=9

i=15

i=16

i=18

i=17

red: blocks covered by inputs

x=(0,0,0,0,0,0,0,0,0,0,0,0) and range(S)={1..12} and t=0

x=(0,1,0,0,0,0,0,0,0,0,0,0) and range(S)={1..12}

x=(1,1,0,1,1,0,0,0,0,0,1,0) and range(S)={1..12}

Now range(S)={21..28} ∪ {37..40} and t=1

Now range(S)={89..96} ∪ {145..148} and t=2

Figure 3.7: This diagram shows the evolution of the state of Algorithm 3.5.2 on an example input
for mif(n = 192, ℓ = 18), with the algorithm configured to have parameters v = 3 and h = 2. In
this case, whenever 6 out of 12 distinct tracked blocks have been covered, the algorithm picks a
subset of 3 uncovered blocks which it will split into 4 subblocks each; it will then proceed to track
incoming elements on the new set of 12 smaller blocks.

of size (2h)h−t. (The jth block contains the values {(2h)h−t(j − 1) + 1, . . . , (2h)h−tj}.) The values

a1, . . . , at are used to determine a set of s = 2hv blocks which did not contain any inputs that were

added during earlier stages. The vector x ∈ {0, 1}s tracks which of the blocks of elements contain

an input that was added during the tth stage.

The algorithm only proceeds to the next stage when the condition in Line 18 holds; in particular,∑
i∈[s] xi = s/2 is needed. After increasing the stage counter t, the algorithm resets x to the all-zero

vector. As at most one coordinate of x is set to 1 for each element processed by the algorithm,

each stage spans ≥ s/2 = hv inputs. Since h(h+ 1)v ≥ ℓ, after all ℓ elements have been processed,

the maximum possible value of t will be h; and if t = h, the maximum value of
∑

i∈[s] xi will be

s/2. Consequently, x will never be the all-1s vector, and whenever the algorithm is queried there

will always exist some coordinate i for which xi = 0.

Algorithm 3.5.2 always produces a valid output because it preserves the invariant that, for the

set of blocks indicated by the range of the function S returned by GetMap(), for each i ∈ [s]

with xi = 0, the block indicated by S(i) does not contain any elements of the input stream. In

particular, when the if-condition at Line 18 holds and t, at, x are updated, the safe blocks in the

range of the new value S̃ of GetMap() will be subsets of the safe blocks in the old value S of

52

Algorithm 3.5.2 A deterministic algorithm for mif(n, ℓ)

Requires: ℓ ≤ n/64
1: Let h, v be integers satisfying h(h+ 1)v ≥ ℓ and v(2h)h+1 ≤ n, and let s = 2hv

Initialization:
2: Define R1, . . . , Rz be an optimal set family for avoid(s, s/2, s/2h) as per Lemma 3.3.4. Let
Ri,j be jth smallest element of Ri

3: a1, . . . , ah are values in [z], all uninitialized
4: t ∈ {0, . . . , h} indicates the current stage
5: x ∈ {0, 1}s, initially all zero, tracks which cells in S are safe (0) or unsafe (1)

6: ▷ Return a function [s]→ [s(2h)t] indicating which regions the algorithm is tracking
GetMap():

7: Let S0 be the identity function from [s] to [s]
8: for i in 1, . . . , t do
9: Let Si be the function from [s]→ [s(2h)i] mapping y to

2h(Si−1(Rai,⌈y/(2h)⌉)− 1) + ((y − 1) mod 2h) + 1 (3.13)

10: return St

Update(e ∈ [n]):
11: if e > v(2h)h+1 then
12: return
13: Let c =

⌈
e/(2h)h−t

⌉
▷ Project onto [s(2h)t]

14: Let S = GetMap()
15: if c /∈ image(S) then
16: return
17: xS−1(c) ← 1
18: if

∑
i∈[s] xi = s/2 and t < h then

19: t← t+ 1
20: at ← j, where j is an index for which Rj ∩ {i : xi = 1} = ∅
21: x← 0⃗

Query:
22: S ← GetMap()
23: Let i be the first index where xi = 0
24: return S(i)(2h)h−t

GetMap().

Specifically, if i is contained in the block S̃(p) (of size (2h)h−t−1 = 1
2h(2h)

h−t), then i is contained

in the block S(q) (of size (2h)h−t), where q = Rai,⌈p/(2h)⌉, because (using Eq. 3.13)⌈
i

1
2h(2h)

h−t

⌉
= S̃(p) = 2h(S(Rai,⌈p/(2h)⌉)− 1) + ((p− 1) mod 2h) + 1

53

implies that⌈
i

(2h)h−t

⌉
=

⌈⌈
i

1
2h(2h)

h−t

⌉/
(2h)

⌉
=
⌈(
2h(S(Rai,⌈p/(2h)⌉)− 1) + ((p− 1) mod 2h) + 1

)/
(2h)

⌉
= S(Rai,⌈p/(2h)⌉) .

Note that the size (2h)h−t block corresponding to S(q) does not contain any stream elements by

the invariant, the choice of ai, and the definition of the {Rj}j∈[z] from Lemma 3.3.4.

Parameters and space usage. One way to choose parameters h and v satisfying the conditions

of Line 1, is to pick:

h =

⌈
min

(√
ℓ/ log(ℓ+ 1),

log n
32ℓ

2 + log log n
32ℓ

)⌉
and v =

⌈
ℓ

h(h+ 1)

⌉
It follows immediately that h(h+ 1)v ≥ ℓ. We also have

h(h+ 1) ≤
(
h+

1

2

)2

≤
(⌈√

ℓ/ log(ℓ+ 1)
⌉
+

1

2

)2

≤ (
√
ℓ+

3

2
)2 ≤ 8ℓ .

Since ⌈y⌉ ≤ max(2, 1
min y)y, this implies:

h2v = h2
⌈

ℓ

h(h+ 1)

⌉
≤ h2 8ℓ

h(h+ 1)
≤ 8ℓ . (3.14)

Then:

v(2h)h+1 = (2h)2v(2h)h−1 ≤ 32ℓ ·
(
2

⌈
log n

32ℓ

2 + log log n
32ℓ

⌉)⌈
log n

32ℓ
2+log log n

32ℓ
−1

⌉

≤ 32ℓ
(
4 log

n

32ℓ

) log n
32ℓ

2+log log n
32ℓ

≤ 32ℓ · n
32ℓ
≤ n .

We will later use the facts that
√
ℓ/ log(ℓ+ 1) is ≥ 1

2 for all ℓ ≥ 1, and that for n ≥ 64ℓ,

log n
32ℓ

2 + log log n
32ℓ

≥ log 2

2 + log log 2
≥ 1

2
.

Using the bound on ⌈log z⌉ from Lemma 3.3.4, and the fact that there is a trivial 2hv-bit

protocol for avoid(2hv, hv, v), we find

⌈log z⌉ ≤ min

(
2hv,

hv · v
2hv − hv − v + 1

+ log(2hv)

)
≤ 2v + log(2hv) ≤ 3v + log h . (3.15)

54

The algorithm stores three types of variables: x, using s = 2hv bits of space; a1, . . . , ah, using

≤ ⌈log z⌉ bits each, and t, using ⌈log(h+ 1)⌉ bits. Applying Eq. 3.15 to the total space usage gives:

2hv + h⌈log z⌉+ ⌈log(h+ 1)⌉ ≤ 2hv + h(3v + log h) + h ≤ 6hv + h log h .

By Eq. 3.14, hv ≤ 8 ℓ
h . Thus the space is:

≤ 48ℓ

h
+ h log h

≤ 48ℓ⌈
min(

√
ℓ/ log(ℓ+ 1),

log n
32ℓ

2+log log n
32ℓ

)
⌉ +

⌈√
ℓ/ log(ℓ+ 1)

⌉
(3 + log

⌈√
ℓ/ log(ℓ+ 1)

⌉
)

≤ 48ℓ√
ℓ/ log(ℓ+ 1)

+
48ℓ

log n
32ℓ

2+log log n
32ℓ

)
+ 2
√
ℓ/ log(ℓ+ 1)(3 + log(2

√
ℓ/ log(ℓ+ 1))

≤
48ℓ(2 + log log n

32ℓ)

log n
32ℓ

+ 64
√
ℓ log(ℓ+ 1) = O

(
ℓ log log 4n

ℓ

log 2n
ℓ

+
√
ℓ log ℓ

)
.

Theorem 3.5.3 almost matches the asymptotic space complexity lower bound for deterministic

algorithms for mif(n, ℓ), from Theorem 3.5.1. The slight (factor Θ(min(log ℓ, log log 4n
ℓ))) difference

in the lower and upper bounds corresponds to a possibility that the algorithms do not use and the

lower bounds do not refute.

Specifically, the lower bound can be seen as showing that the algorithm embeds a sequence of

protocols for avoid, and proves a space lower bound using them. However, the proof does not

account for the space cost of remembering the results of avoid; it assumes the protocols may

involve all states of the algorithm, and there is no state that needs to be preserved. On the other

hand, Algorithm 3.5.2 repeatedly uses deterministic protocols for avoid, and explicitly remembers

the results of each avoid subproblem. Consequently, it has a factor O(h) less space to remember

each avoid solution, and instead of shrinking the space of safe outputs by a factor of 2, as the

lower bound proof assumes, shrinking the space of safe outputs by a factor O(h). If we could

somehow efficiently encode a sequence of h solutions to avoid, each individually needing Ω(v) bits,

in significantly less than O(hv) space, we might be able to shrink the space of outputs less strongly

at each stage, and the deterministic space complexity might match our current lower bound. On

the other hand, if there is no way to share information for a chain of avoid outputs, then the

deterministic space complexity might match the current upper bound.

3.6 Pseudo-deterministic lower bound

The proof presented in this section will generalize the space lower bound for deterministic mif(n, ℓ)

algorithms, which was given in Section 3.5. To briefly recap: in the deterministic lower bound, we

55

defined, for each prefix σ ∈ [n]⋆ of a length ℓ input stream, the set Fσ containing all the possible

values for outputs at time ℓ for streams starting with σ. This definition ensures that if τ ∈ [n]⋆

is a continuation of σ, then Fτ ⊆ Fσ. The deterministic proof used that fact that the algorithm

implements mif(n, ℓ) to implement a protocol for avoid(|Fσ|, t, 12 |Fσ|), for some integer t. By

Lemma 3.3.2, this protocol must use Ω(t) bits of state; equivalently, if z < Ct for some constant C,

there cannot be a such a protocol, which will imply that there exists a stream ρ which appends t

integers to σ, for which |Fρ| < 1
2 |Fσ|. Repeating this argument, if z < Ct, it is possible to construct

a sequence of stream prefixes σ1, . . . , σs, with each σi adding t more elements on to σi−1, and each

Fσi no more than half the size of Fσi−1 . If we had s ≥ log n, then |Fσs | < |Fσ1 |/n = 1, which is

impossible, because the algorithm must make an output at time ℓ.12 Thus, we can obtain an upper

bound on s, which implies a lower bound on t, which implies a lower bound on z for any correct

algorithms. See the proof of Theorem 3.5.1 for more details.

Relaxing “all outputs” to “common outputs”. The deterministic lower bound does not work

as-is for pseudo-deterministic algorithms. A key property needed to construct an avoid protocol in

the deterministic case is that, given just the state v which the algorithm will have after processing

partial stream σ ∈ [n]⋆, and the value ℓ− |σ|, one can compute Fσ. For each τ ∈ [n]ℓ−|σ|, one can

evaluate the algorithm on the concatenation σ.τ by running its state machine from state v, with

inputs from τ , and then recording the output. To obtain Fσ, one takes the union of all outputs

resulting from all τ ∈ [n]ℓ−|σ|.

For pseudo-deterministic algorithms, we must use a different definition for Fσ. We cannot just

define it to be “the set of all canonical outputs at time ℓ for continuations of σ”, because this cannot

be computed reliably from a single state: given a random state v associated to σ, on average a δ

fraction of the outputs might be incorrect and have arbitrary values. Even a single bad output could

corrupt the union calculation! To work around this issue, we define an algorithm that recursively

computes the “most common outputs” at time ℓ for a certain distribution over continuations of σ.

This algorithm, called FindCommonOutputs, or fco for short, is parameterized by a sequence

of randomly chosen thresholds.13 We defer its definition to the formal proof. It can be run against

both the “canonical” algorithm, which always produces the canonical outputs, and the actual

algorithm, starting from some specific state. We will show that:

• With high probability over the random thresholds, fco will produce the same outputs on the

canonical and actual algorithms. In other words, fco is robust to noise (algorithm errors).

• When applied to the canonical algorithm, the outputs of fco will have a similar structure

to the values Fσ from the deterministic proof: that is, the sizes of fco(σ, ...) will shrink

12In fact, |Fσs | ≥ ℓ− |σi|+ 1 must hold, so with suitable parameters we can set s ≈ log 2n
ℓ
.

13The use of random thresholds is a standard trick for robustly computing quantities in the presence of noise.

56

geometrically as the length of σ is increased. This can be proven by implementing avoid

using fco on (a state of) the actual algorithm as a subroutine.

Since fco is defined recursively, these steps will be part of a proof by induction.

Error amplification and the case n≫ ℓ. There is a catch to our design; the recursive method

to estimate sets of common outputs requires that the algorithm have error probability as small as

1/nΩ(logn). Because the algorithm is pseudo-deterministic, even if the original error probability is

1/3, by running many independent copies of the algorithm and choosing the most common output

we can obtain a new algorithm with the necessary error level, prove a space lower bound for that,

and thereby derive a space lower bound for the original algorithm. This procedure is made more

complicated by another feature of our lower bound. A pseudo-deterministic algorithm using z bits of

state can be shown to have only O(2z) possible outputs; so if n≫ ℓ, we can often obtain a stronger

lower bound by assuming that n is actually O(2z), and then solving the system of inequalities to

get a lower bound on z.

3.6.1 Definitions and parameters

We will consider only random-oracle algorithms, as lower bounds for this randomness type imply

lower bounds for random tape and random seed algorithms. Let A be a random oracle pseudo-

deterministic algorithm for mif(n, ℓ) using z bits of state, which has worst case failure probability

δ ≤ 1
3 . Let Π : [n]ℓ → [n] be the function giving the canonical output of A after processing a stream

of length ℓ, and let S = Π([n]t) be the set of all canonical outputs. Clearly |S| ≤ n, and the later

Lemma 3.6.7 will also prove |S| ≤ 2z+1.

The lower bound proof has the limitation that its parameters are only meaningful if z is below

some threshold; specifically, for an integer p chosen later, we require that z ≤ ℓ
18p . The threshold

ℓ
18p , it turns out, will be larger than the lower bound on z that we will prove, so in the end it has

no visible effect. In the following text, we will assume z ≤ ℓ
18p , unless stated otherwise.

Let

p =

⌈√
5ℓ log(64|S|)
3z log 1/(2δ)

⌉
and d =

⌊
ℓ

18zp

⌋
≤
⌊

ℓ

2⌈4 ln 2(zp+ 2)⌉

⌋
(3.16)

td = . . . = t2 = ⌈4 ln 2(zp+ 2)⌉ and t1 = ℓ−
d∑

k=2

tk (3.17)

w1 = t1 + 1 and ∀i ≥ 2, wi =

⌈
ti

2 ln 2(zp+ 2)
wi−1

⌉
. (3.18)

The main proof in this section only applies to algorithms with very low error (potentially as small

as 1
nΩ(logn)), so we will first apply Lemma 2.3.4, using p independent instances of A to construct a

57

new algorithm B which uses zp bits of space and has much smaller error, ≤ ε, where ε ≤ (2δ)p/30.

Using the above definitions, we have:

log
1

ε
≥ p

30
log

1

2δ
≥ ℓ

18zp
log(64|S|) ≥ d log(64|S|) = log

1

1/(64|S|)d
,

and hence ε ≤ 1
(64|S|)d . For use in the future, we define, for k ∈ [d], εk := wk(64|S|)k−1ε. One can

show using calculations given later that εd <
1
64 .

Note that since B was derived from A, its canonical outputs are still described by Π. Since

we can view B as a distribution over deterministic streaming algorithms, where which algorithm is

used depends on the value of B’s oracle random string, we can define a corresponding distribution

D over the set of functions of type [n]ℓ → [n], where the probability of a particular function A

is the probability that B uses a deterministic algorithm which produces outputs according to A.

Because B is pseudo-deterministic, we are guaranteed the following property:

∀x ∈ [n]ℓ : Pr
A∼D

[A(x) ̸= Π(x)] ≤ ε . (3.19)

We describe a randomized algorithm FindCommonOutputs (short: fco) which, when run on

Π and a random matrix C ∈ [1, 2)d×N, produces a large set T which is a subset of S; and when

run on a random function A ∼ D and on C, produces the same set with positive probability. See

Procedure 3.6.1. A lower bound on |T | (which depends on z) then implies a lower bound on |S|;
with some algebra we can use this to derive a lower bound for z.

Procedure 3.6.1 and later proofs use the following notation. If for some integers m′ < m, A is

a function from [n]m → [n], and x ∈ [n]m
′
, then we use the notation Ax to indicate the function

mapping each y ∈ [n]m−m′
to A(x.y). Ax can be seen as the result of using partial function

application on A.

3.6.2 Proof by induction

We will now show that we can find a set contained in S of size ≥ wd. The following lemma is

central to the proof:

Lemma 3.6.1. Let k ∈ {1, . . . , d}, and x ∈ [n]td+...+tk+1.

Pr
A∼D,C∈R[1,2)d×N

[fco(Ax, C, k) = fco(Πx, C, k)] ≥ 1− εk .

Furthermore, fco(Πx, C, k) will be disjoint from x and a subset of S, and fco(·, ·, k) will always

output some set of size wk.

We now prove Lemma 3.6.1, by induction on k. First, we prove the case k = 1:

58

Procedure 3.6.1 The procedure to compute a set for Lemma 3.6.1

Let t1, . . . , td, w1, . . . , wd be integer parameters, and S the set of valid outputs

FindCommonOutputs(B, C, k) ▷ A.k.a. fco(B,C, k)

1: ▷ B is a function from [n]tk+...+t1 to [n]
2: ▷ C is a vector in [1, 2)d×N

3: ▷ The output will be a subset of S of size wk

4: if k = 1 then
5: e0 ← B((1, 1, 1, . . . , 1))
6: for i in 1, . . . , t1 do
7: ei ← B((e0, . . . , ei−1, 1, . . . , 1))

8: E ← {e0, e1, . . . , et1}
9: if |E| = w1 then return E

10: else return arbitrary subset of S of size w1

11: else
12: for each y ∈ sort

(
S
tk

)
do

13: ▷ Recall By is notation for the partial application of B with prefix y
14: TB,y ← FindCommonOutputs(By, C, k − 1) ▷ note |TB,y| = wk−1

15: Q0 ← TB,(1,2,...,tk) ▷ choice of seed vector is arbitrary

16: for h in 1, 2, . . . ,
⌊

4wk
wk−1

⌋
− 1 do

17: for each j ∈ S do

18: f
(h)
j ←

∣∣∣{y ∈ sort
(
Qh−1
tk

)
: j ∈ TB,y

}∣∣∣
19: Ph ←

{
j ∈ S : f

(h)
j ≥ Ck,hwk−1

16|S|

∣∣∣(Qh−1
tk

)∣∣∣}
20: Qh ← Qh−1 ∪ Ph

21: if |Qh| ≥ wk then
22: return the wk smallest elements in Qh

23: return arbitrary subset of S of size wk

59

Lemma 3.6.2. Lemma 3.6.1 holds for k = 1.

Proof of Lemma 3.6.2. Let e0, . . . , et1 be the values of the variables on Lines 5 to 7 of Proce-

dure 3.6.1 when fco(Π, C, 1) is called; note that these do not depend on C. Define for i ∈ {0, . . . , t1}
vectors si = (e0, . . . , ei−1, 1, . . . , 1), so that s0 = (1, 1, . . . , 1), and st1 = (e0, . . . , et1−1). Then if for

all i ∈ {0, . . . , t1}, Ax(si) = Πx(si), the value of fco(Ax, C, 1) will exactly match fco(Πx, C, 1).

By a union bound,

Pr
A∼D,C

[fco(Ax, C, k) ̸= fco(Πx, C, k)] ≤
t1∑
i=0

Pr
A∼D

[Ax(si) ̸= Πx(si)] ≤
Eq. (3.19)

(t1 + 1)ε = ε1 .

Because Π is the canonical output function for a protocol for mif, for any z ∈ [n]ℓ, we have

Π(z) /∈ z. Consequently, each ei = Π(x.e0.ei−1.1.1) is neither contained in x nor by

{e0, . . . , ei−1}; thus {e0, . . . , et1} has size t1 + 1 = w1 and is disjoint from x.

Proving the induction step is more complicated. First, we observe that:

Lemma 3.6.3. Let x ∈ [n]td+...+tk+1. When computing fco(Πx, C, k), in the hth loop iteration, if

|Qh−1| < wk, then |Ph \Qh| ≥ 1
4⌈wk−1⌉. Consequently, the algorithm will return using Line 22, not

Line 23.

Proof of Lemma 3.6.3. Assume for sake of contradiction that |Qh−1| < wk and |Ph\Qh| ≤
⌊
1
4wk−1

⌋
.

Then we can use the algorithm A to implement a protocol for the one-way communication problem

avoid(|Qh−1|, tk,
⌈
1
2wk−1

⌉
), with ≤ 1

2 probability of error.

We assume without loss of generality that Qh−1 = [|Qh−1|]; if not, relabel coordinates so that

this holds. In the protocol, after Alice is given a subset W ⊆ Qh−1 with |W | = tk, Alice constructs

a sequence v = x.sort(W) in [n]td+...+tk . Then Alice uses public randomness to instantiate an

instance E of A; inputs the sequence v to E; and sends the new state of E to Bob, using a zp-bit

message. As Bob shares public randomness with Alice, Bob can use this state to evaluate the

output of the algorithm on any continuation of the stream. In particular, Bob can evaluate the

algorithm for any possible suffix, to produce a function Ãx.sort(W) : [n]
tk−1+...+t1 → [n]; Bob then

samples a random C ∈ [1, 2)d×N, and computes V = fco(Ãx.sort(W), C, k− 1), which is a subset of

S. If |V ∩Qh−1| ≥
⌈
1
2wk−1

⌉
), Bob outputs the smallest

⌈
1
2wk−1

⌉
entries of V ∩Qh−1. Otherwise,

Bob outputs an arbitrary set of size
⌈
1
2wk−1

⌉
.

First, we observe that for any value of sort(W), the distribution of Ãx.sort(W) is exactly the

same as the distribution of Ax.sort(W), when A is drawn from D; this follows because for a fixed

setting of the random string of the algorithm, it behaves deterministically.

Applying Lemma 3.6.1 at k − 1, we observe that for any W ∈
(
Qh−1
tk

)
,

Pr[fco(Ãx.sort(W), C, k − 1) = fco(Πx.sort(W), C, k − 1)] ≥ 1− εk−1 ≥
3

4
.

60

Furthermore, we are guaranteed that fco(Πx.sort(W), C, k − 1) has size wk−1 and is disjoint from

W .

We now bound the probability, over a random y ∈ sort
(
Qh−1
tk

)
, that |fco(Πx.y, C, k − 1) ∩

Qh−1| <
⌈
1
2wk−1

⌉
. Define Ty and, for each j ∈ S, f (h)j , as in Procedure 3.6.1. In particular, we

have:

Pr
y,C

[
|Ty ∩Qh−1| <

⌈
1

2
wk−1

⌉]
= Pr

y,C

[
|Ty \Qh−1| >

⌊
1

2
wk−1

⌋]
≤ Pr

y,C

[
|Ty \ Ph \Qh−1| >

⌊
1

2
wk−1

⌋
−
⌊
1

4
wk−1

⌋]
(3.20)

≤ Pr
y,C

[
|Ty \ Ph| ≥

1

4
wk−1

]
.

(The inequality on Eq. (3.20) follows since we assumed |Ph \Qh−1| ≤
⌊
1
4wk−1

⌋
.) As

∑
j /∈Ph

f
(h)
j ≥

1
4wk|{y : |Ty \ Ph| ≥ 1

4wk−1}|, it follows

Pr
y,C

[
|Ty \ Ph| ≥

1

4
wk−1

]
≤ 4

wk−1

∑
j /∈Ph

f
(h)
j(|Qh−1|

tk

)
=

4

wk−1
(|S| − |Ph|)

Ck,hwk−1

16|S|

≤ 4 · 2
16

=
1

2
.

Thus the probability that |Ty ∩Qh−1| <
⌈
1
2wk−1

⌉
holds is ≤ 1/2. Since Bob only gives an incorrect

output when this happens or when fco(Ãx.sort(W), C, k− 1) ̸= fco(Πx.sort(W), C, k− 1), it follows

by a union bound that the total failure probability is ≤ 1
2 + 1

4 ≤
3
4 .

Consequently, the protocol implementation has ≤ 3
4 error when inputs are drawn from the

uniform distribution over
(
Qh−1
tk

)
; by Lemma 3.3.2, we obtain a lower bound on the required message

length, giving

zp >
tk
⌈
1
2wk−1

⌉
|Qh−1| ln 2

+ log(1− 3/4) ≥ tkwk−1

|Qh−1| · 2 ln 2
− 2 .

Rearranging this slightly and using integrality of |Qh−1| gives:

|Qh−1| ≥
⌈

tkwk−1

2 ln 2(zp+ 2)

⌉
= wk ,

but as |Qh−1| < wk, this implies wk < wk, which is a contradiction; this proves that the assumption

|Ph \Qh| ≤ 1
4wk−1 must have been invalid.

Finally, we observe that since, in each iteration of the loop on Lines 16 to 22, |Qh| = |Qh−1 ∪
Ph| = |Qh−1|+ |Ph \Qh−1| ≥ |Qh−1|+

⌈
1
4wk−1

⌉
, and we initially have |Q0| = wk−1, the size of Qh

61

(assuming we haven’t returned yet) must be ≥ wk−1(1 + h/4). As soon as h ≥ 4wk
wk−1

− 4, we will

have |Qh| ≥ wk; as there are up to
⌊

4wk
wk−1

⌋
− 1 loop iterations, this will certainly happen.

Lemma 3.6.4. For k > 1, x ∈ [n]td+...+tk+1, fco(Πx, C, k) is disjoint from x and a subset of S;

and for all A,C, k, fco(Ax, C, k) outputs a set of size wk.

Proof of Lemma 3.6.4. That fco(Ax, C, k) always outputs a set of size wk follows from the struc-

ture of the algorithm: having finite loops, it always terminates, and either returns a set of size wk

via Step 22, or a set of size wk via Step 23.

By Lemma 3.6.1 at k− 1, the sets TAx,y chosen on Line 14 are always subsets of S and disjoint

from x.y, and hence disjoint from x. Per Lemma 3.6.3, FindCommonOutputs will return a subset

of Qh using Line 22, where h is the last loop iteration number. Qh only contains integers which

were either in TAx,(1,2,...,tk) (and hence also in S) or which were in Ph′ for some h′ ≤ h. Note

that Ph′ only contains integers j for which f
(h′)
j > 0; i.e., which were contained in one of the sets

(TAx,y)y∈sort(Qh′−1
tk

)
, and are thereby also in S.

Lemma 3.6.5. For k > 1, and all x ∈ [n]td+...+tk+1,

Pr
A∼D,C

[fco(Ax, C, k) ̸= fco(Πx, C, k)] ≤ εk .

Proof of Lemma 3.6.5. The proof of the lemma follows from the observation that, when computing

fco(Ax, C, k), even if a fraction of the recursive calls to fco(Ax.y, C, k − 1) produced incorrect

outputs, the values for Q0 and (Ph)h≥1 will likely match those computed when fco(Πx, C, k) is

called.

Henceforth, we indicate variables from the computation of fco(Πx, C, k) without a tilde, and

variables from the computation of fco(Ax, C, k) with a tilde. For example, f
(h)
j is computed using

B = Πx, while f̃
(h)
j is computed using B = Ax. We also define

f̂
(h)
j =

∣∣∣∣{y ∈ sort

(
Qh−1

tk

)
: j ∈ TA,y

}∣∣∣∣
P̂h =

{
j ∈ S : f̂

(h)
j ≥

Ck,hwk−1

16|S|

∣∣∣∣(Qh−1

tk

)∣∣∣∣} ;

that is, f̂
(h)
j and P̂h are the values that would be computed by fco(Ax, C, k) if the set Qh−1 was

used instead of the set Q̃h−1.

Say fco(Πx, C, k) returns from the loop at iteration h⋆. The output of fco(Ax, C, k) will equal

fco(Πx, C, k) if Q0 = Q̃0 and Ph = P̂h for all h ∈ [h⋆]. (If this occurs, then because Q0 = Q̃0,

P̂1 = P̃1, so Q1 = Q0 ∪ P1 = Q̃0 ∪ P̃1 = Q̃1, and because Q1 = Q̃1, P̂2 = P̃2, and so on.) By

Lemma 3.6.1 at k − 1, the probability that Q0 ̸= Q̃0 is ≤ εk−1. Consider a specific h ∈ [h⋆]; the

62

only way in which P̂h ̸= Ph is if there is some j ∈ S for which f
(h)
j and f̂

(h)
j are on opposite sides

of the threshold
Ck,hwk−1

16|S| |
(
Qh−1
tk

)
|.

Let λh be the random variable indicating the fraction of y ∈ sort
(
Qh−1
tk

)
for which TAx,y ̸= TΠx,y.

Note that the values TAx,y are functions of the random variable A and of Ck′,h for k′ < k, h ∈ N; in
particular TAx,y is independent of (Ck,h)h∈N. By Lemma 3.6.1 at k − 1, Pr[TAx,y ̸= TΠx,y] ≤ εk−1,

which implies Eλh ≤ εk−1.

Fix a particular setting of A and (Ck′,h)k′<k,h∈N. Since each set TAx,y contributes 1 unit to each

of wk−1 variables f̂
(h)
j :

∑
j∈S

∣∣∣f (h)j − f̂ (h)j

∣∣∣ ≤ wk−1

∣∣∣∣{y ∈ sort

(
Qh−1

tk

)
: TAx,y ̸= TΠx,y

}∣∣∣∣ = wk−1λh

(
Qh−1

tk

)
.

Let F be the set of possible values in [1, 2) for Ck,h for which Ph ̸= P̂h; this is a union of intervals

corresponding to each pair
(
f
(h)
j , f̂

(h)
j

)
, for j ∈ S. A given value c is bad for j if

f
(h)
j <

cwk−1

16|S|

(
|Qh−1|
tk

)
≤ f̂ (h)j , equivalently: c ∈

(
16|S|f (h)j

wk−1

(|Qh−1|
tk

) , 16|S|f̂ (h)j

wk−1

(|Qh−1|
tk

)] ,
and similarly in the case where f̂

(h)
j < f

(h)
j . The measure of F is

≤
∑
j∈S

16|S|
wk−1

(|Qh−1|
tk

) |f̂ (h)j − f (h)j | ≤
16|S|
wk−1

wk−1λh = 16|S|λh .

This upper bounds the probability that Ck,h ∈ F and Ph ̸= P̂h. We then have:

Pr[Ph ̸= P̂h] = EA,(Ck′,h)k′<k
Pr[Ck,h ∈ F] ≤ EA,(Ck′,h)k′<k

(16|S|λh) = 16|S|εk−1 .

By a union bound, the probability that Q0 ̸= Q̃0 or Ph ̸= P̂h for any h ≤ h⋆ is

≤ εk−1 + h⋆16|S|εk−1 ≤ 16

⌊
4wk

wk−1

⌋
|S|εk−1 ≤

64|S|wk

wk−1
εk−1 .

Thus Pr[fco(Ax, C, k) ̸= fco(Πx, C, k)] ≤ 64|S|wk

wk−1
εk−1 = εk.

Finally, we observe that Lemmas 3.6.2 to 3.6.5, together imply Lemma 3.6.1.

3.6.3 Calculating the lower bound

A consequence of Lemma 3.6.1 is that fco(Π, C, d) will output a set of size wd which is a subset of

S.

63

Lemma 3.6.6. Even if 18zp > ℓ, we have:

z ≥ ℓ

8460 log 2|S|
ℓ

min

(
1,

log(1/2δ)

log(64|S|) log 2|S|
ℓ

)
.

Proof of Lemma 3.6.6. If, as we have assumed, 18zp ≤ ℓ, then for each i ≥ 2, by Eqs. (3.17)

and (3.18),

wi =

⌈
ti

2 ln 2(zp+ 2)
wi−1

⌉
=

⌈
⌈4 ln 2(zp+ 2)⌉
2 ln 2(zp+ 2)

wi−1

⌉
≥ 2wi−1 .

Also, by Eqs. (3.16) and (3.17),

w1 ≥ ℓ+ 1−
d∑

k=2

tk = ℓ+ 1− d⌈4 ln 2(zp+ 2)⌉ ≥ ℓ+ 1− ℓ

2
≥ ⌈ℓ/2⌉ .

Since wd ≤ |S|, we obtain:

|S| ≥ wd ≥ 2d⌈ℓ/2⌉ =⇒ log
2|S|
ℓ
≥ d ≥ ℓ

36zp
=⇒ zp ≥ ℓ

36 log 2|S|
ℓ

. (3.21)

On the other hand, if 18zp ≥ ℓ, then we tautologically have zp ≥ ℓ
18 . Taking the minimum of this

and Eq. (3.21) gives an inequality that holds in all cases:

zp ≥ min

(
ℓ

18
,

ℓ

36 log 2|S|
ℓ

)
≥ ℓ

36 log 2|S|
ℓ

, since log
2|S|
ℓ
≥ 1.

Next, we rearrange and expand the definition of p, using ⌈x⌉ ≤ max(1, 2x):

log
2|S|
ℓ
≥ ℓ

36zp
≥ min

(
ℓ

36z
,
ℓ

72z

√
3z log 1/2δ

5ℓ log(64|S|)

)
= min

(
ℓ

36z
,

√
ℓ log 1/2δ

8460z log(64|S|)

)
.

We now have two cases: if the left side of the minimum is smaller, then

z ≥ ℓ

36 log 2|S|
ℓ

, while otherwise, z ≥ ℓ log 1/(2δ)

8460 log(64|S|)(log 2|S|
ℓ)2

.

Computing a common lower bound for the two cases gives:

z ≥ ℓ

8460 log 2|S|
ℓ

min

(
1,

log(1/2δ)

log(64|S|) log 2|S|
ℓ

)
.

Lemma 3.6.7. |S| < 2z+1.

Proof of Lemma 3.6.7. For each a ∈ S, let xa ∈ Π−1(a). One can use A to provide a randomized

64

≤ δ-error, z-bit encoding of the elements in S. Using public randomness, encoder and decoder

choose the oracle random string for A. Each a ∈ S is encoded by sending xa to A and outputting

the algorithm state σ. To decode, given a state σ, one evaluates the output of A at state σ. Using

the minimax principle, one can prove that the randomized encoding requires ≥ log((1− δ)|S|) bits
of space, which implies 2z ≥ (1− δ)|S|. Since δ ≤ 1

3 , it follows s ≤
3
22

z < 2z+1.

We now establish the main result:

Theorem 3.6.8. Pseudo-deterministic δ-error random oracle algorithms for mif(n, ℓ) require

Ω

(
min

(
ℓ

log 2n
ℓ

+
√
ℓ,

ℓ log 1
2δ

(log 2n
ℓ)

2 log n
+

(
ℓ log

1

2δ

)1/4
))

bits of space when δ ≤ 1
3 . In particular, when δ = 1/ poly(n) and ℓ = Ω(log n), this is:

Ω

(
ℓ

(log 2n
ℓ)

2
+ (ℓ log n)1/4

)
.

Using Lemma 3.6.6 and the fact that S ⊆ [n], we obtain |S| ≤ min(n, 2z+1). The theorem

follows by combining this bound with the inequality of Lemma 3.6.7, and four each of four cases

corresponding to different branches of min and max, solving to find a lower bound on z.

Proof of Theorem 3.6.8. By Lemma 3.6.6, we have:

z ≥ min

(
ℓ

8460 log 2|S|
ℓ

,
ℓ

8460 log 2|S|
ℓ

· log(1/2δ)

log(64|S|) log 2|S|
ℓ

)
. (3.22)

By Lemma 3.6.7, |S| ≤ min(n, 2z+1) ≤ min(n, 4z). We will apply this inequality to each branch of

the minimum in Eq. 3.22. First, say that the left part of the minimum is larger than the right.

Then z ≥ ℓ/(8460 log 2|S|
ℓ). Applying |S| ≤ n and |S| ≤ 4z, this implies:

z ≥ ℓ

8460 log 2n
ℓ

, and

z ≥ ℓ

8460 log 2·4z
ℓ

≥ ℓ

8460 · 3z
=⇒ z ≥

√
ℓ

25380
.

Thus:

z ≥ max

(
ℓ

8460 log 2n
ℓ

,

√
ℓ

25380

)
. (3.23)

Next, say that the right side of the minimum in Eq. 3.22 is larger. Then applying |S| ≤ n and

65

|S| ≤ 4z to that side, we get:

z ≥ ℓ log(1/2δ)

8460(log 2n
ℓ)

2 log(64n)
, and

z ≥ ℓ log(1/2δ)

8460(log 2·4z
ℓ)2 log(64 · 4z)

≥ ℓ log(1/2δ)

609120z3
=⇒ z ≥

(
ℓ log(1/2δ)

609120

)1/4

.

Thus:

z ≥ max

(
ℓ log(1/2δ)

8460(log 2n
ℓ)

2 log(64n)
,

(
ℓ log(1/2δ)

609120

)1/4
)
. (3.24)

The minimum of the lower bounds from Eqs. 3.23 and 3.24 holds in all cases, so:

z ≥ min

(
max

(
ℓ

8460 log 2n
ℓ

,

√
ℓ

25380

)
,max

(
ℓ log(1/2δ)

8460(log 2n
ℓ)

2 log(64n)
,

(
ℓ log(1/2δ)

609120

)1/4
))

.

Remark 3.6.9. For δ ≤ 2−ℓ, Theorem 3.6.8 reproduces the deterministic algorithm space lower

bound for mif(n, ℓ) from Theorem 3.5.1 within a constant factor.

3.7 Random seed space complexity, adversarial setting

3.7.1 Lower bound: a general reduction to the pseudo-deterministic case

Our lower bound proof for random seed algorithms in the adversarial setting, relies on one key

observation. At a given point in the stream, either the adversary is able to provide an input

on which the algorithm has a high entropy output distribution (and the algorithm will learn a

significant amount of information about the initial random bits of the algorithm), or for every

possible input, the algorithm produces a canonical output with ≥ 2/3 probability. As a result,

we can design an adversary which in a number of steps, either learns new information about

the algorithm’s random seed, or identifies a range of inputs on which the algorithm will act like a

pseudo-deterministic algorithm. As the random seed itself has limited entropy, the adversary cannot

learn new information about the seed too often, and will (most likely) identify a region where the

algorithm behaves pseudo-deterministically. Applying a space lower bound for pseudo-deterministic

algorithms for mif will complete the argument.

Lemma 3.7.1. Define SPD
1/3 (n, t) to be the space complexity of pseudo-deterministic random oracle

algorithms for mif(n, t) with ≤ 1/3 error.

Say A is a z-bit random oracle algorithm solving mif(n, ℓ) in the adversarial setting, with error

≤ 1
6 , and let R be the random oracle string that it uses. Then z ≥ SPD

1/3 (n, ⌊ℓ/⌈4H(R)⌉⌋), where

66

H(R) is the entropy of R.

In particular, since any z-bit random seed algorithm can be implemented as a z-bit random

oracle algorithm with H(R) ≤ z, all ≤ 1/6-error z-bit random seed algorithms for mif(n, ℓ) in the

adversarial setting satisfy z ≥ SPD
1/3 (n, ⌊ℓ/(4z)⌋).

Proof of Lemma 3.7.1. Write B ∼ A to indicate that B is an instance of A, initialized using

random oracle string R. Let h = ⌈4H(R)⌉, and t = ⌊ℓ/h⌋. For any partial stream σ of elements,

and instance B of A, we let B(σ) be the sequence of |σ| outputs made by B after it processes each

element in σ.

Consider an adversary E which does the following. Defining σ to be the stream it has already

passed to the algorithm, and ν the sequence of outputs that A produced in response to σ, the

adversary checks if there exists any x ∈ [n]t for which

∀y ∈ [n]t : Pr
B∼A

[B(σ.x) = ν.y | B(σ) = ν] ≤ 2

3
. (3.25)

If so, it sends x to A, appends x to σ and the returned t elements to ν, and repeats the process. If

no such x exists, then the adversary identifies the w ∈ [n]t which maximizes:

Pr
B∼A

[B(σ.w) is incorrect | B(σ) = ν] . (3.26)

and sends it to the algorithm. (The adversary gives up if either the algorithm manages to give a

valid output after w, or after it has sent h sets of t elements to the algorithm.)

We claim that if z < SPD
1/3 (mif(n, t)), then E makes the algorithm fail with probability ≥ 1/6.

There are two ways that E will not make the algorithm fail: if it tries more than h−1 times to find

a point where there is no x ∈ [n]t satisfying Eq. 3.25, or if the w it sends fails to produce an error.

Assume that the adversary finds a value of x satisfying Eq. 3.25, for each of the h tries it makes.

Let x1, . . . , xh ∈ [n]t be these values, and let y1, . . . , yh ∈ [n]t be the outputs of the algorithm. By

applying Eq. 3.25 repeatedly, we have:

Pr
B∼A

[B(x1.xh) = y1.yh]

= Pr
B∼A

[B(x1.xh) = y1.yh | B(x1.xh−1) = y1.yh−1]

· Pr
B∼A

[B(x1.xh−1) = y1.yh−1 | B(x1.xh−2) = y1.yh−2]

· . . . · Pr
B∼A

[B(x1) = y1]

≤ (2/3)h .

Let C be the event that the adversary finds a sequence satisfying Eq. 3.25, h times. Because the

adversary is deterministic, we can define τ(R) to map values of the algorithm oracle random string

67

to the input-output transcripts in [n]⋆× [n]⋆, when the algorithm is run against the adversary. Let

T be the set of transcripts that could occur under event C. Then we have:14

H(R) ≥ H(τ(R)) ≥
∑
T∈T

Pr[τ(R) = T] log
1

Pr[τ(R) = T]

≥
∑
T∈T

Pr[τ(R) = T] log(3/2)h = Pr[C] · h log 3

2
.

Consequently,

Pr[C] ≤ H(R)

h log 3
2

=
H(R)

⌈4H(R)⌉ log 3
2

≤ 1

4 log(3/2)
<

1

2
.

Thus, the chance that the adversary E fails to find a point where no x satisfying Eq. 3.25 exists is

< 1
2 .

To bound the second way in which E can fail, we let (σ, υ) be a partial transcript of the algorithm

for which no x ∈ [n]t satisfies Eq. 3.25. Assume the probability that w produces an error is < 1/3.

Then we have:

∀w ∈ [n]t, ∃yw ∈ [n]t : Pr
B∼A

[B(σ.w) = υ.yw | B(σ) = υ] ≥ 2

3
(3.27)

∀w ∈ [n]t : Pr
B∼A

[B(σ.w) is correct | B(σ) = υ] ≥ 2

3
. (3.28)

These conditions together imply that υ.yw is a correct mif(n, ℓ) output sequence for σ.w. As a

result, we can use A’s behavior after (σ, υ) to construct a pseudo-deterministic algorithm Ψ for

MIF (n, t). To initialize Ψ, we sample an initial state B ∼ A conditioned on the event that

B(σ) = υ, and then send the elements of σ to B. After this, when Ψ receives an element e, we

send e to B, and report the element B outputs as the output of Ψ. By Eqs. 3.27 and 3.28, the

sequence of outputs produced by Ψ on any input x in [n]t will, with probability ≥ 2/3, be the

(correct) output yw. Thus, Ψ solves MIF (n, t) with ≤ 1/3 error – which, under the assumption

that z < SPD
1/3 (mif(n, t)), is impossible. Thus the w chosen by the adversary makes the algorithm

err with probability ≥ 1/3, conditional on it having found (σ, υ) with no x ∈ [n]t satisfying Eq.

3.25. The probability that the adversary succeeds/algorithm fails is then ≥ 1/3 · 1/2 = 1/6; this

contradicts the assumption that A has error ≤ 1/6 against any adversary, which implies that we

must instead have z ≥ SPD
1/3 (mif(n, t)).

Remark 3.7.2. In the proof of Lemma 3.7.1, we only used the self-similarity property of mif: that

when an algorithm solves mif(n, ℓ), it also solves mif(n, t) for any subsequence of t consecutive

inputs. In fact, Lemma 3.7.1 can be applied to any streaming problem with such a property. More

14Note: if support(R) ≤ 2z, then we in fact get Pr[C] =
∑

T∈T Pr[τ(R) = T] ≤ 2z(2/3)h, which gives a stronger
upper bound on Pr[C].

68

generally, if a random-seed algorithm A solves problem P with ≤ 1/6-error, then its space usage is

lower-bounded by the minimum space needed, for any stream prefix σ, to implement an algorithm

that pseudo-deterministically solves a problem Qσ with 1/3-error, where Qσ is the task of solving

P on input streams that start with σ and have t additional elements.

Combining Lemma 3.7.1 and Theorem 3.6.8 gives us an unconditional lower bound for adver-

sarially robust random seed algorithms. The proof is straightforward, with some casework. (This

lower bound is mainly useful for ℓ ≤ n2/3; for larger ℓ, the Ω(ℓ2/n) lower bound of Theorem 3.3.5

is stronger.)

Corollary 3.7.3. Adversarially robust random seed algorithms for mif(n, ℓ) with error ≤ 1
6 require

Ω
(√

ℓ/(log n)3 + ℓ1/5
)
bits of space.

Proof of Corollary 3.7.3. The lower bound from Theorem 3.6.8 for mif(n, t) with error δ = 1/3,

showing constants, is:

max

(
t log(3/2)

8460(log 2n
t)

2 log(64n)
,

(
t log(3/2)

609120

)1/4
)
. (3.29)

If z ≥ ℓ/4, then we tautologically have a lower bound of ℓ/4. Otherwise, we have 4z ≤ ℓ. Applying
Lemma 3.7.1 gives, for the left branch of the max in Eq. 3.29, with t =

⌊
ℓ
4z

⌋
≥ 1

8z :

z ≥
⌊
ℓ

4z

⌋
log(3/2)

8460(log 2n
t)

2 log(64n)
≥ ℓ

8z

log(3/2)

8460(log(2n))2 log(64n)

which implies

z ≥

√
ℓ

135360(log(2n))2 log(64n)
≥

√
ℓ

3790080(log n)3
.

For the right branch of Eq. 3.29, we obtain:

z ≥
(⌊

ℓ

4z

⌋
log(3/2)

609120

)1/4

≥
(
ℓ

8z

1

2 · 609120

)1/4

,

which implies:

z5/4 ≥
(

ℓ

9745920

)1/4

=⇒ z ≥
(

ℓ

9745920

)1/5

.

Combining the two lower bounds gives:

z ≥ max

(√
ℓ

3790080(log n)3
,

(
ℓ

9745920

)1/5
)
.

69

This lower bound is always smaller than ℓ/4, so it also holds in the case where z ≥ ℓ/4.

Remark 3.7.4. While in this chapter we do not need it, Lemma 3.7.1 can be generalized to work for

error thresholds ≤ 1/6, if one distinguishes between two types of error for a pseudo-deterministic

algorithm: the probability that the pseudo-deterministic algorithm makes a non-canonical output,

and the probability that the pseudo-deterministic algorithm makes a mistake (output which is

not correct). One can get a δ-error lower bound for z-random seed algorithms for mif(n, ℓ) as

a function of a 1/3-non-canonical 2δ-mistake lower bound for pseudo-deterministic algorithms for

mif(n, ⌊ℓ/4z⌋).
This may well be a dead end for the sake of finding better mif-lower bounds; we suspect that

Theorem 3.6.8 can be improved to match the deterministic lower bound within constants for even

1/3-non-canonical protocols, in which case investigating a separate mistake rate is of little use. The

possibility is still important to note: a similar distinction, between mistakes and out-of-domain-

outputs, proved useful for the random tape lower bound of Theorem 3.11.7.

Remark 3.7.5. Lemma 3.7.1 can not just be used to imply space lower bounds for random seed

algorithms in the adversarial setting, but for all algorithms for mif(n, ℓ) using ≤ ℓ/4 “bits of

randomness”. If a random oracle algorithm A for mif(n, ℓ) uses an oracle random string R from

some distribution with H(R) ≤ ⌊ℓ/4⌋, then applying Lemma 3.7.1 and Theorem 3.6.8 implies A
needs at least Ω(ℓ

H(R) polylog(n)) bits of space. In particular, any ≤ 1/6-error, O(polylog(n)) space

algorithm requires Ω(ℓ/polylog(n)) bits of randomness. A similar tradeoff can be proven for random

tape algorithms in the adversarial setting.

3.7.2 Upper bound: hidden list of subsets

We now present a random-seed algorithm for the adversarial setting whose total space with random

bits included can be better than Algorithm 3.3.1. This new algorithm, instead of having a hidden

list of individual elements in [n], stores a hidden list L of disjoint blocks of elements, and instead

of just outputting a single element from a block, will recursively run a deterministic algorithm for

mif inside the current “active” block. The algorithm is given by Algorithm 3.7.1, and a figure

illustrating its state is given by Figure 3.8.

Theorem 3.7.6. Algorithm 3.7.1 is a random seed algorithm that solves mif(n, ℓ) in the adversarial

setting, with error ≤ δ, and can be implemented using O
(
(ℓ

2

n +
√

ℓ
logn + ℓ1/3 + log 1

δ) log ℓ
)
bits of

space.

Proof of Theorem 3.7.6. Consider the algorithm formed by combining Algorithm 3.7.1 with the

nested deterministic algorithm of Algorithm 3.5.1.

As with the proof of Theorem 3.3.5, we observe that Algorithm 3.7.1 will always either produce

a valid output or abort (on Line 13). This follows from the runtime invariant that the algorithm

70

Figure 3.8: A diagram illustrating the state of an instance of Algorithm 3.7.1 on an example input.
Positions on the horizontal axis correspond to integers in [n]; the set of values in the input stream
({1, 2, 4, 9, 12, 13, . . .}) is marked with black squares; the current output value (15) with a circle.
(The value of L used is for ease of presentation; L does not need to be contiguous or in sorted
order.)

Algorithm 3.7.1 An adversarially robust, random-seed algorithm for mif(n, ℓ) with error ≤ δ

Assume ℓ ≥ 16, ℓ ≤ n/16 and δ ≥ 2−ℓ/15 – otherwise, use Algorithm 3.1.1

Let t =
⌈
max

(
4ℓ2

n ,
√

ℓ log ℓ
logn , (ℓ log ℓ)

1/3
)⌉

▷ number of blocks used up by nested algorithm

Let s = 2ℓ, ▷ total number of blocks to split [n] into
Let k = max(4t,

⌈
15 log 1

δ

⌉
) ▷ the length of the random list of blocks

Let A be a deterministic algorithm (like Algorithm 3.5.1) for mif(⌊n/s⌋, ⌊ℓ/t⌋), which can
report when it is “full” (has no more outputs)

Initialization:
1: Let L = (L1, . . . , Lk) be a sequence of k distinct elements from [s] chosen uniformly at random.
2: c← 1, an integer in the range from 1 to k
3: J ← ∅, a subset of [k]
4: A← a new instance of A

Update(e ∈ [n]):
5: Let h = ⌈e/⌊n/s⌋⌉ ▷ h is the number of the block containing e
6: if there exists j where Lj = h then
7: J ← J ∪ {j}
8: if h = Lc then
9: A.Update(e− ⌊n/s⌋(Lc − 1))

10: if A.Query() = full then ▷ A will take ≥ 1 + ⌊ℓ/t⌋ updates to fill
11: c← least integer which is > c and not in J
12: if c > t then
13: abort
14: A← a new instance of A

Query:
15: Let j ← A.Query(), an integer in [⌊n/s⌋]
16: output: ⌊n/s⌋(Lc − 1) + j

maintains: that for all i ∈ [k] \ J , none of the elements in Li have been part of the input stream so

far. As a result, when a new value for c is chosen, Lc will not contain any inputs. The deterministic

algorithm, when run on the substream with domain Lc, will (until it returns Full) always report

71

some element from Lc which was not in the stream since the deterministic algorithm instance

started, and hence not in the stream at all. (In Lines 9 and 16, Algorithm 3.7.1 maps the subset

Lc to [⌊n/s⌋] and back.)

That the parameter k ≤ ℓ follows because, due to the constraint δ ≥ 2−ℓ/15, we have
⌈
15 log 1

δ

⌉
≤

ℓ; and because the three terms in the maximum within the definition for for t are all individually

≤ ℓ/4 – the first because ℓ ≤ n/16 implies 4ℓ2

n ≤ ℓ/4, and the other two because ℓ ≥ 16, which

implies
√
ℓ log ℓlogn ≤

√
ℓ ≤ ℓ/4. Then (ℓ log ℓ)1/3 ≤ ℓ/4.

We observe that because t ≥ 4 ℓ2

n and n ≥ 16ℓ, we have:⌊
ℓ

t

⌋
+ 1 ≤

⌊ n
4ℓ

⌋
+ 1 ≤

⌊ n
2ℓ

⌋
=
⌊n
s

⌋
,

so the nested algorithms for mif are initialized with valid parameters.

The maximum number of times that a deterministic algorithm instance can report full, on

Line 10, is ⌊ℓ/(⌊ℓ/t⌋+ 1)⌋ < t, since each instance is updated at most once per call to Update,

and each instance is guaranteed to work for at least ⌊ℓ/t⌋ inputs, and will thus at earliest report

full after ⌊ℓ/t⌋+1. Consequently, the nested deterministic algorithm will be initialized a total of

≤ t times, and over the course of the algorithm c will take ≤ t different values.
The algorithm aborts precisely when J = [k]. We note that at any time, the adversary only

has two useful options: to pick some input in the block associated to Lc (“walk”), or to pick an

input from some block in [s] which has not contained any input so far, and which is also not Lc

(“guess”). Any other decision will have no effect on the state of the algorithm. We observe that the

adversary can make at most ℓ “walk” inputs and at most ℓ “guess” inputs, in some order. Let F be

the random variable giving the number of “guess” inputs. For each i ∈ [ℓ], let Xi be the indicator

random variable for the event that the ith guess input (if i ≤ F) was in L[[k] \ J \ {c}], and let Ui

be the number of times the nested algorithm was initialized15, before the ith guess. Then for each

i,

Pr[Xi = 1|X1, . . . , Xi−1] = Pr[ith guess in L[[k] \ J \ {c}] | X1, . . . , Xi−1]

=
k −

∑i−1
j=1Xj − Ui

s− i+
∑i−1

j=1Xj − Ui

≤
k −

∑i−1
j=1Xj

s− i+
∑i−1

j=1Xj

,

since the ith “guess” input will be some new value, and the k−
∑i−1

j=1Xj −Ui elements of L which

were not guessed or otherwise revealed are uniformly random among the s − i +
∑i−1

j=1Xj − Ui

elements of [s] which were not guessed or otherwise revealed. Now, let T be a uniformly randomly

chosen subset of [s] of size ℓ, and for each i ∈ [ℓ], define indicator random variable Yi to be 1 iff

15If W is the number of walk inputs, then Ui ≤ 1 + ⌊W/⌊n/s⌋⌋.

72

T ∈ [k]. Note E|Y ∩ [k]| = ℓk
s = 1

2k. We have for each i, and for w1, . . . , wi−1 ∈ {0, 1}:

Pr[Yi = 1|Y1 = w1, . . . , Yi−1 = wi−1] =
k −

∑i−1
j=1wj

s− i−
∑i−1

j=1wj

≥ Pr[Xi = 1|X1 = w1, . . . , Xi−1 = wi−1] .

Consequently:

Pr[
ℓ∑

i=1

Xi ≥ k − t] ≤ Pr[
ℓ∑

i=1

Yi ≥ k − t]

≤ Pr[
ℓ∑

i=1

Yi ≥
3

2
· 1
2
k] because t ≥ k/4

≤ exp

(
− 1

10
· 1
2
k

)
by Chernoff bound, Lemma 2.3.3

≤ 2−
1

20 ln 2
k ≤ 2−k/15 ≤ δ .

This proves that the probability of the adversary adding ≥ k − t entries to J from its guesses is

≤ δ. Since the adversary can make at most ℓ “walk” inputs, at most t different entries of J will be

added by the “walk” strategy; so it follows the probability that J = [k] will be ≤ δ.
Let S(n̂, ℓ̂) be the space used by Algorithm 3.5.1 to solve mif(n̂, ℓ̂). Then the space used by

Algorithm 3.7.1 is:

≤ k log s︸ ︷︷ ︸
for L

+ k︸︷︷︸
for J

+ log k︸︷︷︸
for c

+ S(⌊n/s⌋, ⌊ℓ/t⌋)︸ ︷︷ ︸
for A

+ 1︸︷︷︸
for ⌈·⌉ of preceding terms

≤ (t+

⌈
15 log

1

δ

⌉
) log(4ℓ) + 1 + log ℓ+ S(⌊n/s⌋, ⌊ℓ/t⌋)

≤ t log(4ℓ) + log
2

δ
log(4ℓ) + S

(⌊ n
3ℓ

⌋
, ⌊ℓ/t⌋

)
.

The value of t balances the contributions of S(n̂, ℓ̂) = O(ℓ̂ log ℓ̂log n̂ +

√
ℓ̂ log ℓ̂) with the term t log(4ℓ).

The space used is:

O
(
t log ℓ+ log

1

δ
log ℓ+

(ℓ/t) log(ℓ/t)

log((2n/3ℓ)/(ℓ/t))
+

√
ℓ

t
log

ℓ

t

)
≤ O

(
t log ℓ+ log

1

δ
log ℓ+

ℓ log ℓ

t log(2n/ℓ)
+

√
ℓ

t
log ℓ

)

≤ O

(
t log ℓ+ log

1

δ
log ℓ+

ℓ log ℓ

t log n
+

√
ℓ

t
log ℓ

)

73

(because log 2n
ℓ = Ω(log n) when ℓ

t logn ≥ t holds)

≤ O

((
ℓ2

n
+

√
ℓ log ℓ

log n
+ (ℓ log ℓ)1/3)

)
log ℓ+ log

1

δ
log ℓ

+
ℓ log ℓ√
ℓ log ℓ
logn log n

+

√
ℓ

(ℓ log ℓ)1/3
log ℓ

)

≤ O

(
ℓ2

n
log ℓ+ log

1

δ
log ℓ+

√
ℓ log ℓ

log n
+ (ℓ log ℓ)1/3

)

≤ O

((
ℓ2

n
+

√
ℓ

log n
+ ℓ1/3 + log

1

δ

)
log ℓ

)
.

Remark 3.7.7. If there were a 1/poly(ℓ)-error pseudo-deterministic algorithm for mif(n, ℓ) using

significantly less space than the best deterministic algorithms, we could reduce the space usage of the

random seed algorithm in the ℓ = polylog(n) regime further by instantiating copies of the pseudo-

deterministic algorithm, configured for O(δℓ) error probability. By Newman’s theorem [New91], one

can implement all the instances of the pseudo-deterministic algorithm, at additional error O(δℓ)

each, using a fixed random seed of size O(log ℓ+ log logN + log(ℓ/δ)2) = O(log(ℓ/δ)2). In the last

expression, N is the number of possible valid algorithm outputs,16 which for a ≤ ℓ-bit algorithm

is ≤ 2ℓ. The cost of Newman’s theorem is negligible compared to the remaining space cost of the

pseudo-deterministic algorithm instances.

3.8 White-box adversarial lower bound

In this section, we prove a lower bound for algorithms in the white-box adversarial setting. The

lower bound uses a very similar argument to the deterministic lower bound for mif (Theorem 3.5.1),

and can be seen as a generalization of it.

For the deterministic lower bound, we defined, for each stream σ ∈ [n]⋆ of length ≤ ℓ, the set Fσ

containing all the possible outputs at time ℓ when the algorithm is run on streams that start with

σ. The set Fσ can be computed from just the state v that the algorithm reaches after processing

σ, and the number ℓ − |σ| of future inputs. For the white-box case, we will define, for specific

states v, a set Hv containing “safe” outputs. To be more accurate, because the algorithm has

discarded information about its input sequence by projecting down to a limited number of states,

every integer j in [n] \Hv will be “unsafe” to output: there will be an Ω(ℓ/n) probability that j

was an earlier input. Just as for deterministic algorithms, by a consequence of a reduction from

avoid, the sets Fσ shrunk exponentially as |σ| increased, for the white-box adversarial setting, the

16For mif, one can safely ignore all inputs which the algorithm can never output, so the number of valid output
values is the same as the number of relevant input values.

74

sizes of the sets Hv will shrink exponentially as the adversary sends more inputs. In both cases,

the exponent of shrinkage depends on the value of z, and because the sets cannot grow too small

for a correct algorithm, one can derive a lower bound on z.

The adversary we design uses O(log n
ℓ) rounds of interaction; having this many appears to

be unavoidable. The paper [ABJ+22], which introduced the white-box adversarial setting, found

how to reduce white-box adversarially robust algorithms to deterministic 2-player communication

protocols. Unfortunately, for Missing Item Finding, the natural 2-player communication game is

avoid(n, ℓ/2, ℓ/2), whose deterministic communication complexity is very close to its randomized

communication complexity. (See Lemmas 3.3.2 and 3.3.3.) Using the reduction to 2-player commu-

nication would at best yield an Ω(ℓ2/n) lower bound, which is much weaker than the lower bound

that we prove.

Theorem 3.8.1. Random tape algorithms for mif(n, ℓ) in the white-box adversarial setting with

error δ ≤ min
(

1
10 ,

ℓ2

400n

)
require space

Ω

(
ℓ

1 + log n
ℓ

+
√
ℓ

)
.

The O(min(1, ℓ2/n)) upper bound on the error can not be improved by much: there is a log n bit

algorithm which just produces a random output on every step, and obtains Θ(min(1, ℓ2/n)) error.

Thus, we appear to have a relatively sharp threshold between the error levels at which guessing

the next value is possible, and the error levels at which it isn’t. For the latter case, one cannot do

much better than deterministic algorithms.

In our proof of Theorem 3.8.1 we will use the following lemma. It will be used to argue that,

after the adversary sends a random subset to the algorithm, if the algorithm does not have enough

memory to remember the entire subset, it must forget enough information that it will only have a

small “safe” set of possible output values.

Lemma 3.8.2. Let W and Σ be sets, d an integer, and P a function from
(
W
d

)
to △[Σ], where

|Σ| ≤ 2z. Let F be a random function
(
W
d

)
→ Σ in which for all x ∈

(
W
d

)
and σ ∈ Σ, Pr[F (x) =

σ] = P (x)(σ), and let X be a uniformly random element of
(
W
d

)
, chosen independently of F . For

each σ ∈ Σ, let Hσ be greedily constructed, starting from ∅, by repeatedly adding sets Q disjoint

from the current value of Hσ for which |Q| ≤
⌊
|W |
d

⌋
and

Pr[Q ∩X ̸= ∅ | F (X) = σ] ≤ d|Q|
4|W |

. (3.30)

This ensures that for all sets Q of size ≤
⌊
|W |
d

⌋
which are disjoint from Hσ, Eq. 3.30 does not hold.

75

Adversary 3.8.1 A white-box adversary for z-bit algorithms for mif(n, ℓ)

Let U be the set of all possible outputs of the algorithm

Let t =
⌈
log 8|U |

ℓ

⌉
Adversary:

1: Let H0 = U
2: extract current algorithm state σ0
3: k ← 0
4: while |Hk| ≥ ℓ/6 do
5: if k ≥ t then
6: abort ▷ more iterations needed than planned

7: k ← k + 1
8: Let dk = max(⌊ℓ/(3t)⌋,

⌊
ℓ/(6 · 2k)

⌋
) ▷ as t ≥ 4, d1 = ⌊ℓ/12⌋

9: Let Sk be a random subset of Hk−1 of size dk
10: send sort(Sk) to the algorithm
11: Let Pk :

(Hk−1

dk

)
→ △Σ map each possible value of Sk to the resulting distribution over

states, if we start at state σk−1

12: extract current algorithm state σk
13: Let Hk := Hσk

, where Hσk
is defined from Pk according to Lemma 3.8.2.

14: ▷ Make the algorithm output ⌈ℓ/3⌉ distinct elements
15: for j = 1, . . . , ⌈ℓ/3⌉ do
16: extract current algorithm output ej
17: send ej to algorithm

Then for any α ∈ (0, 1):

Pr
[∣∣HF (X)

∣∣ ≥ ŵ] ≤ α where ŵ :=

⌈
50
z + 2 + log 1

α

d
n

⌉
.

Proof of Lemma 3.8.2. This proof slightly generalizes that of Lemma 3.9.2. First, we observe that

for any set Q of size ≤
⌊
|W |
d

⌋
,

Pr[X ∩Q ̸= ∅] = 1− Pr[X ∩Q = ∅] = 1−

(|W |−d
|Q|

)(|W |
|Q|
) = 1− (|W | − d) · · · (|W | − d− |Q|+ 1)

|W | · · · (|W | − |Q|+ 1)

≥ 1−
(
|W | − d
|W |

)|Q|
≥ 1− exp

(
−|Q|d
|W |

)
≥ |Q|d

2|W |
,

where the last inequality follows because |Q|d
|W | ≤

⌊
|W |
d

⌋
d

|W | ≤ 1:

For any σ ∈ Σ, as a consequence of the greedy construction of Hσ, we can decompose Hσ into

76

t disjoint sets Q1, . . . , Qt each satisfying Eq. 3.30. By linearity of expectation:

E

∑
i∈[t]

1X∩Qi ̸=∅ | F (X) = σ

 =
∑
i∈[t]

Pr[X ∩Qi ̸= ∅ | F (X) = σ] ≤
∑
i∈[t]

d|Qi|
4|W |

≤ d|Hσ|
4|W |

.

Then by the complement of Markov’s inequality:

Pr

∑
i∈[t]

1X∩Qi ̸=∅ ≤
4

3

d|Hσ|
4|W |

∣∣∣F (X) = σ

 ≥ 1− 3

4
=

1

4
.

Since X is drawn uniformly at random from
(
W
d

)
, the random variables {1i∈X}i∈W are negatively

associated. Since the maximum function is nondecreasing, for any collection of s disjoint sets

R1, . . . , Rs of size ≤
⌊
|W |
d

⌋
, the random variables {1X∩Ri ̸=∅}i∈S are also negatively associated.

Then applying Lemma 2.3.3:

Pr

∑
i∈[s]

1X∩Ri ̸=∅ ≤
2

3

d
∑

i∈[s] |Ri|
2|W |

 ≤ exp

(
−
(
1

3
+

2

3
ln

2

3

)
d
∑

i∈[s] |Ri|
2|W |

)
≤ 2

−
d
∑

i∈[s] |Ri|
50|W | .

We now bound the probability that σ was chosen:

Pr[F (X) = σ] ≤
Pr
[∑

i∈[s] 1X∩Ri ̸=∅ ≤
d|Hσ |
3|W |

]
Pr
[∑

i∈[s] 1X∩Ri ̸=∅ ≤
d|Hσ |
3|W | | F (X) = σ

] ≤ 2
− d|Hσ |

50|W |

1/4
.

Finally, let B = {σ ∈ Σ : |Hσ| ≥ ŵ}. Then:

Pr[|HF (X)| ≥ ŵ] =
∑
σ∈B

Pr[F (X) = σ]

≤ 2z · 4 · 2−
d|Hσ |
50|W | ≤ 2z+2 · 2−(z+2+log 1

α) = α .

Proof of Theorem 3.8.1. Say the algorithm uses z bits of space. Since it is a random tape algorithm,

it has at most min(n, 2z) possible outputs. Let t be as defined in Adversary 3.8.1. We prove that,

if z ≤ 1
1600

⌊
ℓ
3t

⌋
, the white-box adversary described in Adversary 3.8.1 will make the algorithm err

with probability ≥ min
(

1
10 ,

ℓ2

400|U |

)
.

The adversary runs the loop starting at Line 4 at most t times, so the total number of elements

it sends to the algorithm is

t∑
k=1

dk + ⌈ℓ/3⌉ ≤
t∑

k=1

⌊ℓ/(3t)⌋+
t∑

k=1

⌊
ℓ/(6 · 2k)

⌋
+ ⌈ℓ/3⌉ ≤

⌊
ℓ

3

⌋
+

⌊
ℓ

6

⌋
+ ⌈ℓ/3⌉ ≤ ℓ .

Let G be the event in which, on every loop iteration, the set Hk constructed has size ≤ 1
2 |Hk−1|.

77

If G holds, then |Ht| ≤ |U |2−t ≤ |U | ℓ
8|U | ≤

ℓ
8 , and the adversary will exit the loop at or before

the tth iteration. We now bound the probability that G does not hold. For each k ∈ [t], by

Lemma 3.8.2, with probability ≥ 1− 1
400t|U | , we have:

|Hk| ≤
⌈
50
z + 2 + log(400t|U |)

dk
|Hk−1|

⌉
− 1 ≤ 50

z + 2 + log(400t|U |)
dk

|Hk−1| .

Applying t =
⌈
log 8|U |

ℓ

⌉
≤ 4|U |, |U | ≤ 2z, and (by Lemma 3.1.2) z ≥ log(ℓ+ 1) ≥ 1:

|Hk| ≤ 50
3z + 13

dk
|Hk−1| ≤

800z|Hk−1|
dk

≤
800 1

1600

⌊
ℓ
3t

⌋
|Hk−1|

max(
⌊

ℓ
3t

⌋
, ⌊ℓ/(6 · 2k−1)⌋

≤ 1

2
|Hk−1| .

Then by a union bound, the probability that |Hk| > 1
2 |Hk−1| in some iteration is ≤ 1

400t|U | t ≤
1

400|U | .

Assuming event G holds, let τ be the value of k at the time Line 4 exits the loop; then |Hτ | ≤ ℓ
6 .

After the adversary reaches Line 15, it will make the algorithm output ⌈ℓ/3⌉ distinct values (or else
repeat an element and make a mistake). Let Q be the set of outputs made by the algorithm. Then

|Q \Hτ | ≥ ℓ
3 −

ℓ
6 ≥

ℓ
6 . Conditioned on the values of σ0, σ1, . . . , στ , the random sets S1, . . . , Sτ and

Q are independent of each other. For i ∈ [τ], let Qi = (Q ∩Hi) \Hi−1. Intuitively, each Hi gives

a “safe” subset for outputs in Hi−1, and |Qi| is the number of outputs in Hi−1 missing that safe

subset. Now, for each k ∈ [τ], we have

dk
4|Hk−1|

≥
max

(
⌊ℓ/(3t)⌋,

⌊
ℓ/(6 · 2k)

⌋)
|U |2−(k−1)

≥
1
2ℓ/(6 · 2

k)

|U |/2k−1
≥ ℓ

24|U |
. (3.31)

Furthermore, letting Q̃k be the first ⌊|Hk−1|⌋dk elements of Qk (or all of them if Qk is smaller),

Pr[Q̃k ∩ Sk ̸= ∅] ≥
dk|Q̃k|
4|Hk−1|

≥
dk min(|Qk|,

⌊
|Hk−1|

dk

⌋
)

4|Hk−1|

≥ min

(
|Qk|dk
4|Hk−1|

,
|Hk−1| − dk
4|Hk−1|

)
≥ min

(
|Qk|

ℓ

24|U |
,
1

8

)
,

where in the last step we applied Eq. 3.31 and the fact that |Hk−1| ≥ ℓ
6 ≥ 2dk. The probability

that the algorithm does not produce an invalid output is (still assuming that G holds):

Pr

Q ∩ ⋃
k∈[τ]

Sk = ∅

 ≤ Pr

 ∧
k∈[τ]

Qk ∩ Si = ∅

 =
∏
k∈[τ]

Pr[Qk ∩ Sk = ∅]

≤
∏
k∈[τ]

(
1−min

(
|Qk|

ℓ

24|U |
,
1

8

))

78

≤ max

7

8
, exp

−∑
k∈[τ]

|Qk|
ℓ

24|U |


≤ max

(
7

8
, exp

(
− ℓ2

144|U |

))
≤ max

(
7

8
, 1− ℓ2

200|U |

)
.

Thus the probability that G holds and the algorithm makes a mistake is:

≥ min

(
1

8
,

ℓ2

200|U |

)
− 1

400|U |
> min

(
1

10
,

ℓ2

400|U |

)
.

If the algorithm has error probability ≤ min
(

1
10 ,

ℓ2

400n

)
, then we must have

z >
1

1600

⌊
ℓ

3t

⌋
≥ 1

1600

ℓ

6t
=

1

9600

ℓ⌈
log 8|U |

ℓ

⌉ ≥ 1

19200

ℓ

log 8|U |
ℓ

.

Since |U | ≤ n, replacing |U | with n on the right hand side gives a lower bound for z. But as also

|U | ≤ 2z, we have:

z >
1

19200

ℓ

z + 3
=⇒

(
z +

3

2

)2

≥ z(z + 3) ≥ ℓ

19200
,

which implies z ≥
√
ℓ/19200− 3/2 ≥

√
ℓ/120000 (since z ≥ 1). Thus:

z ≥ max

(
1

19200

ℓ

log(8n/ℓ)
,

√
ℓ

120000

)
.

3.9 Classical lower bounds

In this section, we present two lower bounds for random oracle algorithms for mif(n, ℓ) in the static

setting. Each of these bounds is stronger in a different parameter regime; it is still open how to

unify them or exactly match the algorithms for the static setting presented in Section 3.2.

3.9.1 By reduction from deterministic

When the worst-case error level δ of a random oracle algorithm is smaller than 1/M , where M is

the number of possible algorithm inputs, then there will exist a fixing of the oracle random string

so that the resulting deterministic algorithm works on all inputs. Using this principle, we obtain:

Theorem 3.9.1. For any δ ≤ 1/(2n), the space complexity for a random oracle algorithm solving

79

mif(n, ℓ) with error ≤ δ is

≥ Ω

(√
min

(
ℓ,
log(1/δ)

log n

)
+min

(
ℓ,
log(1/δ)

log n

)
1

1 + log(n/ℓ)

)
.

Proof of Theorem 3.9.1. Let t be an integer satisfying
⌈
n
t

⌉⌊ ℓt⌋ < 1
δ ; setting t =

⌈
ℓ logn

log 1
2δ

⌉
suffices,

because

log

(⌈n
t

⌉⌊ ℓt⌋) ≤ ⌊ℓ
t

⌋
log
⌈n
t

⌉
≤ ℓ

t
log n ≤ ℓ

⌈ℓ log n/ log(1/2δ)⌉
log n ≤ log(1/2δ)

log n
log n < log

1

δ
.

Note also that because δ ≤ 1/(2n), t ≤ ℓ, and
⌊
ℓ
t

⌋
≥ 1.

Given a randomized algorithm Π that solves mif(n, ℓ) with error ≤ δ on any input stream, we

will show how to construct a randomized algorithm Ψ which solves mif(⌈n/t⌉, ⌊ℓ/t⌋) with the same

error probability. As there are only ⌈n/t⌉⌊ℓ/t⌋ possible input streams for the mif(⌈n/t⌉, ⌊ℓ/t⌋) task,
the probability (over randomness used by Ψ) of the event E than an instance A of Ψ succeeds on

any of the streams in [⌈n/t⌉]⌊ℓ/t⌋ is ≥ 1−δ
⌈
n
t

⌉⌊ ℓt⌋ > 0. Therefore, by fixing the random bits of Ψ to

some value for which the event E occurs, we obtain a deterministic protocol Φ for mif(⌈n/t⌉, ⌊ℓ/t⌋).
We now explain the construction of Ψ given Π. Let f : [n] 7→ [⌈n/t⌉] be the function given by

f(x) = ⌊x/t⌋. For any y ∈ [⌈n/t⌉], we have that f−1(y) is a nonempty set of size ≤ t. The protocol
Ψ starts by initializing an instance A of Π, and sending it ℓ− t⌊ℓ/t⌋ arbitrary stream elements.

When Ψ receives an element e ∈ [⌈n/t⌉], it sends a sequence of t elements of [n] to A, namely,

the elements of f−1(e), in arbitrary order, repeating elements if |f−1(e)| < t. To output an element,

Ψ queries A to obtain i ∈ [n], and reports f(i). Assuming A did not fail, f(i) is guaranteed to

be a correct answer. If we assume for sake of contradiction that f(i) = e for some element e sent

to Ψ earlier, then A must have been sent all elements in f−1(e) – which implies that i ∈ f−1(e)

and that A gave an incorrect output, contradicting the assumption that f(i) = e. Thus, we have

proven that Ψ fails with no greater probability than Π, which is all that is needed to complete this

part of the proof.

Let S(a, b) be the space complexity of deterministic algorithms for mif(a, b). Having shown

that Π needs ≥ S(
⌈
n
t

⌉
,
⌊
ℓ
t

⌋
) space, we now substitute in the lower bound from Theorem 3.5.1.

≥ S
(⌈n

t

⌉
,

⌊
ℓ

t

⌋)
≥ Ω

(√⌊
ℓ

t

⌋
+

⌊ℓ/t⌋
1 + log(⌈n/t⌉/⌊ℓ/t⌋)

)
.

Because ⌊ℓ/t⌋ = Θ
(
min

(
ℓ, log(1/δ)logn

))
, and ⌈n/t⌉/⌊ℓ/t⌋ = Θ(n/ℓ), this simplifies to:

Ω

(√
min

(
ℓ,
log(1/δ)

log n

)
+min

(
ℓ,
log(1/δ)

log n

)
1

1 + log(n/ℓ)

)
.

80

3.9.2 By modified AVOID lower bound

The lower bound for random oracle algorithms for mif(n, ℓ) in the adversarial setting used a re-

duction to avoid. In this section, we use a variant of the communication lower bound for avoid

to obtain a lower bound for random oracle algorithms in the static setting.

Lemma 3.9.2. Let Σ be a set, n and q integers, and P a function from
(
[n]
q

)
to△[Σ], where |Σ| ≤ 2z.

Let F be a random function
(
[n]
q

)
→ Σ in which for all x ∈

(
[n]
q

)
and σ ∈ Σ, Pr[F (x) = σ] = P (x)(σ),

and let X be a uniformly random element of
(
[n]
q

)
, chosen independently of F . For each σ ∈ Σ,

define

Hσ =
{
i ∈ [n] : Pr [i ∈ X | F (X) = σ] ≤ q

4n

}
.

For any α ∈ (0, 1),

Pr
[∣∣HF (X)

∣∣ ≥ ŵ] ≤ α where ŵ :=

⌈
z + 1 + log 1

α

q
n

2 ln 2

1− ln 2

⌉
.

Proof of Lemma 3.9.2. Consider a specific σ ∈ Σ. By linearity of expectation:

E

[∑
i∈Hσ

1i∈X

∣∣∣ F (X) = σ

]
=
∑
i∈Hσ

Pr [i ∈ X | F (X) = σ] ≤ q

4n
|Hσ| .

Then by Markov’s inequality,

Pr

[∑
i∈Hσ

1i∈X ≥ 2 · q
4n
|Hσ|

∣∣∣ F (X) = σ

]
≤ 1

2

which implies Pr

[∑
i∈Hσ

1i∈X ≤
q

2n
|Hσ|

∣∣∣ F (X) = σ

]
≥ 1

2
.

Since X is drawn uniformly at random from
(
[n]
q

)
, the random variables {1i∈X}i∈[n] are negatively

associated, with E1i∈X = q
n for each i ∈ [n]. For any set A ⊆ [n], we use the multiplicative Chernoff

bound (Lemma 2.3.3) to bound the probability that X’s overlap with A is much smaller than the

expected value:

Pr

[∑
i∈A

1i∈X ≤
(
1− 1

2

)
· q
n
|A|

]
≤

(
e−1/2

(1/2)1/2

) q
n
|A|

= exp

(
−1

2
(1− ln (2))

q

n
|A|
)
.

We now bound:

Pr [F (X) = σ] ≤
Pr
[∑

i∈Hσ
1i∈X ≤ q

2n |Hσ|
]

Pr
[∑

i∈Hσ
1i∈X ≤ q

2n |Hσ|
∣∣ F (X) = σ

]
81

≤ 2 exp

(
−1

2
(1− ln (2))

q

n
|Hσ|

)
.

Finally, let B = {σ ∈ Σ : |Hσ| ≥ ŵ}. Then:

Pr
[∣∣HF (X)

∣∣ ≥ ŵ] = ∑
σ∈B

Pr [F (X) = σ]

≤ 2z · 2 exp
(
−1

2
(1− ln (2))

q

n
ŵ

)
≤ 2z · 2 exp

(
−
(
z + 1 + log

1

α

)
ln 2

)
≤ 2z · 2 · 2−(z+1+log 1

α) = α .

Theorem 3.9.3. For any δ ≤ 1/2 and ℓ ≥ 4, the space complexity of a random oracle algorithm

solving mif(n, ℓ) with error ≤ δ (even if just evaluated at the end) is

≥ Ω

(
max

(
0,
ℓ

n
min

(
ℓ,

log 2
δ

log 2n
ℓ

)
− 50

))
.

Proof of Theorem 3.9.3. We will consider the performance of a given algorithm using z bits of

state when the input consists of a uniformly random subset S in
([n]
⌈ℓ/2⌉

)
, presented in sorted order,

followed by a uniformly random subset T in
([n]
⌊ℓ/2⌋

)
, again in sorted order, and show that if z is too

small, the algorithm will produce an incorrect output with ≥ δ probability at the end of the stream.

Since we are considering a fixed input distribution, without loss of generality we can assume the

given algorithm Υ is deterministic.

Let Σ be the set of states of Υ. Let t = ⌈ℓ/2⌉ and t′ = ⌊ℓ/2⌋, and define the function

f :
(
[n]
t

)
7→ Σ, where f(S) is the state which Υ reaches after being given S. For each state

σ ∈ Σ, define

Hσ =

{
i ∈ [n] : Pr[i ∈ S|P (S) = σ] ≤ t

4n

}
.

Then by Lemma 3.9.2, with P :
(
[n]
t

)
7→ △[Σ] defined so that set S is mapped to the constant

distribution which takes value f(S) with probability 1:

Pr
[
|Hf(S)| < w

]
≥ 1

2
where w :=

⌈
z + 2

t
n

2 ln 2

1− ln 2

⌉
.

In other words, there is a ≥ 1/2 probability that, for the state resulting from the random set S,

most coordinates are “unsafe”, and if chosen by the algorithm at this point will be incorrect with

≥ t
4n probability. Say that t′ ≥ w − 1. (We will address the case t′ ≤ w − 2 later.) Then in the

event that |Hf(S)| < w, it is in fact possible that the random set T ⊇ Hf(S), in which case there is

82

no “safe” output for the algorithm. Formally,

Pr
[
T ⊇ Hf(S)||Hf(S)| ≤ (w − 1)

]
≥

(n−(w−1)
t′−(w−1)

)(
n
t′

) =

(
t′

w−1

)(
n

w−1

) ≥ (t′

w−1)
w−1

(en
w−1)

w−1
≥
(
t′

en

)w−1

. (3.32)

Let I ∈ [n] be the random variable for the choice of the algorithm. The failure probability of the

algorithm is:

Pr[I ∈ S ∪ T] ≥
∑

σ∈Σ:|Hσ |<w

Pr[I ∈ S ∪ T ∧ f(S) = σ]

=
∑

σ∈Σ:|Hσ |<w

Pr[f(S) = σ] Pr[I ∈ S ∪ T | f(S) = σ] . (3.33)

We now proceed to lower bound the terms Pr[I ∈ S ∪ T | f(S) = σ]. First, note that

Pr[I ∈ S ∪ T | f(S) = σ] ≥ Pr[I ∈ S ∪ T ∧ T ⊇ Hσ | f(S) = σ]

= Pr[I ∈ S ∪ T | T ⊇ Hσ ∧ f(S) = σ] Pr[T ⊇ Hσ | f(S) = σ]

= Pr[I ∈ S ∪ T | T ⊇ Hσ ∧ f(S) = σ] Pr[T ⊇ Hσ] .

where the last line uses the independence of S and T . Next, because Pr[A ∪ B] ≥ Pr[B] + Pr[A |
¬B](1− Pr[B]) ≥ Pr[A | ¬B], we have:

Pr[I ∈ S ∪ T | T ⊇ Hσ ∧ f(S) = σ] ≥ Pr[I ∈ S | I /∈ T ∧ T ⊇ Hσ ∧ f(S) = σ] .

The random variable I is a function of T and σ alone. Also, I /∈ T and T ⊇ Hσ implies I ∈ [n]\Hσ.

Consequently, also using the fact that T is uniformly random,

Pr[I ∈ S | I /∈ T ∧ T ⊇ Hσ ∧ f(S) = σ] ≥ min
j∈[n]\Hσ

Pr[j ∈ S | j /∈ T ∧ T ⊇ Hσ ∧ f(S) = σ]

= min
j∈[n]\Hσ

Pr[j ∈ S | f(S) = σ] .

By the definition of Hσ, this last quantity is ≥ t
4n . Recalling Eqs. 3.33 and 3.32:

Pr[I ∈ S ∪ T] ≥
∑

σ∈Σ:|Hσ |<w

Pr[f(S) = σ]
t′

4n
Pr[T ⊇ Hσ]

≥
∑

σ∈Σ:|Hσ |<w

Pr[f(S) = σ]
t

4n

(
t′

en

)w−1

=
t

4n

(
t′

en

)w−1

Pr[|Hf(S)| < w]

≥ 1

8e

(
t′

en

)w

.

83

(Since t = ⌈ℓ/2⌉ ≥ ⌊ℓ/2⌋ = t′.) We have assumed that the algorithm fails with probability ≤ δ,

hence:

δ ≥ 1

8e
·
(
t

en

)w

=⇒ w ≥ log(8e/δ)

log(8n/t′)
.

Now, if it is not the case that t′ ≥ w − 1, then we have t′ < w − 1, and hence t′ + 2 ≤ w. Thus:

min

(
t′ + 2,

log(8e/δ)

log(8n/t′)

)
≤ w =

⌈
(z + 2)n

t

2 ln 2

1− ln 2

⌉
.

Solving for z, we obtain:

z ≥ (w − 1)
t

n
· 1− ln 2

2 ln 2
− 2

≥ min

(
⌊ℓ/2⌋+ 2,

log(8e/δ)

log(8n/⌊ℓ/2⌋)

)
⌈ℓ/2⌉
n

1− ln 2

2 ln 2
− 2

≥ min

(
ℓ

2
,

log(2/δ)

5 log(2n/ℓ)

)
ℓ

5n
− 2

= Ω

(
max

(
0,
ℓ

n
min

(
ℓ,

log 2
δ

log 2n
ℓ

)
− 50

))
.

This lower bound is zero for constant δ and low ℓ/n. This is not a mistake, as there is a zero

bit, one state randomized protocol that outputs a random integer in [n], and succeeds with ≥ ℓ/n
probability in the static setting.

3.10 Random tape upper bound, adversarial setting

In this section, we describe an adversarially robust random tape algorithm for mif(n, ℓ) which

obtains error ≤ δ in the adversarial setting. In order to explain why this algorithm has the

structure it does, it is helpful to first revisit the random oracle and random seed algorithms for the

problem.

The random oracle algorithm and its adversaries. Recall from Section 3.3.3 the simple

random oracle algorithm for mif(n, ℓ), Algorithm 3.3.1. It interprets its oracle random string

as a uniformly random sequence L containing ℓ + 1 distinct elements in [n]. As this algorithm

processes the input stream, it keeps track of which elements in L were in the input stream so far

(were “covered”). The algorithm reports as its output the first element of L which is not covered.

Because L comes from the oracle random string, the space cost of the algorithm is just the cost of

keeping track of the set J of covered positions in L. We will explain why that can be done using

only O((ℓ2/n+ 1) log ℓ) space, in expectation.

84

An adversary for the algorithm only has two reasonable strategies for choosing the next input.

It can “echo” back the current algorithm output to be the next input to the algorithm. It can

also choose the next input to be a value from the set U of values that are neither an earlier input

nor the current output – but because L is chosen uniformly at random, one can show that the

adversary can do no better than picking the next input uniformly at random from U . (The third

option, of choosing an old input, has no effect on the algorithm.) When the algorithm is run

against an algorithm that chooses inputs using a mixture of the echo and random strategies, the

set J will be structured as the union of a contiguous interval starting at 1 (corresponding to the

positions in L covered by the echo strategy) and a random set of size O(ℓ2/n) (corresponding to

positions in L covered by the random strategy.) Together, these parts of J can be encoded using

O((ℓ2/n+ 1) log ℓ) bits, in expectation.

Delaying the echo strategy. If we implemented the above random oracle algorithm as a random

seed algorithm, we would need Ω(ℓ) bits of space, just to store the random list L. But why does

L need to have length ℓ + 1? This length is needed for the algorithm to be resilient to the echo

strategy, which covers one new element on L on every step; if L were shorter, the echo strategy

could entirely cover it, making the algorithm run out of possible values to output. The random

seed algorithm for mif(n, ℓ) works by making the echo strategy less effective, ensuring that multiple

steps are needed for it to cover another element of L. It does this by partitioning [n] into Θ(ℓ)

disjoint subsets (“blocks”) of size Θ(n/ℓ); let B be the set of blocks. Then, instead of having L

be a random list over element of [n], it has L be a random list over elements of B. We will now

say that a block is covered if any element of that block was an input. Instead of outputting the

first uncovered element in L, the algorithm will run a deterministic algorithm for mif inside the

block corresponding to the first uncovered block of L, and report outputs from that; and will only

move on to the next uncovered block when the nested algorithm stops. See Algorithm 3.7.1 from

Section 3.7 for the details of this design. Because the analogue of the echo strategy now requires

many more inputs to cover a block, we can make the list L shorter. This change will not make the

random strategy much more effective. In the end, after balancing the length of the list with the cost

of the nested algorithm, the optimal list length for random seed algorithm will be O(ℓ2/n+
√
ℓ).

The recursive random tape algorithm. The random seed algorithm for mif(n, ℓ) used the

construction of Algorithm 3.7.1 to build on top of an “inner” deterministic algorithm.17 To get an

efficient random tape algorithm, we can recursively apply the construction of Algorithm 3.7.1 d−1

times, for d = O(min(log ℓ, log n/ log ℓ)) times; at the end of this recursion, we can use a simple

17The construction initializes the inner algorithm multiple times. For the random seed model, every time an inner
randomized algorithm is initialized would require a new batch of random bits, and all batches would be counted
toward the space cost of the algorithm. Using a deterministic inner algorithm avoids this cost.

85

deterministic algorithm for mif. The optimal lengths of the random lists used at each level of the

recursion are determined by balancing the costs of the different recursion levels. We end up choosing

list lengths that all bounded by a quantity that lies between O(ℓ1/d) and O(ℓ1/(d−1)). The exact

details we defer to the final version of our algorithm, Algorithm 3.10.1. This final version looks

somewhat different from the recursive construction in Algorithm 3.7.1, because we have unraveled

the recursive framing to allow for better control over parameters and to permit a simpler error

analysis that must only bound the probability of a single bad event.

3.10.1 Definitions and the random tree view

past active safe unsafe

L1=[1,3,5,6]
x1=[1,0,0,1] x3=[1,0,1]x2=[1,0,0]

L2=[1,3,4] L3=[1,2,3]

= no longer in memory the current output

definitely no
inputs here

have an input
in this region

Figure 3.9: Diagram showing the state of the algorithm in Algorithm 3.10.1 and how it relates to
the parts of the implicit random tree that the algorithm traverses. This example uses parameters
d = 3, w1 = 6, w2 = 4, w3 = 3, and b1 = 4, b2 = 3, b3 = 3.

In order to prove that the algorithm in Algorithm 3.10.1 is correct, we will need some additional

notation. Let d, α, b1, . . . , bd, w1, . . . , wd be as defined in Algorithm 3.10.1. It is helpful to view this

algorithm as traversing over the leaves of a random tree of height d, in which:

• Every node v in the tree is associated with a subset Sv of [n]. We say a node is at level i if

it is at depth i− 1.

• The root ρ of the tree has Sρ of size
∏d

i=1wi, and is at level 1

• Each node v at level i (depth i−1) has bi+1 children; the set Sv is partitioned into wi+1 parts

of equal size, and each child of v is associated with a random and unique one of these parts

• Each leaf node u, at depth d, has |Su| = 1 and is associated with a unique integer in [n].

There are
∏d

i=1 bi leaf nodes in total.

See for example Figure 3.9. The algorithm maintains a view of just the branch of the tree from

the root to the current leaf node. Its output will be the number associated to this leaf. For each

86

node v on this branch, at level i ∈ [d] (depth i − 1), it keeps a record of the positions Li ∈ [wi]
bi

of its children, and a record xi ∈ {0, 1}bi indicating their status. There are four categories for child

nodes:

• A node is past if the traversal over the tree passed through and leaf the node; past nodes are

marked with a 1.

• A node is active if it is on the branch to the current leaf node; this is the node with the

lowest index which is marked with a 0

• A node v is safe if it comes after the active node, and the adversary has never sent an input

in Sv; safe nodes are marked with a 0

• A node v is unsafe if it comes after the active node, and the adversary did send an input in

Sv; unsafe nodes are marked with a 1

The algorithm maintains these records as the adversary sends new inputs, marking safe child nodes

v as unsafe if an element in Sv is received. The current leaf node is found by, from the root,

following the chain of active nodes. If the adversary sends the value of the current leaf node, the

algorithm will mark it by setting the corresponding entry in xd to 1, thereby changing the value of

the current active node. If it turns out that xd is an all-1s vector, then the adversary has sent an

input for every child of the level d node on the current branch, so the algorithm marks the current

active child of the level d − 1 node with a 1, thereby moving the current branch to a new level d

node, u. (If the level d−1 node has no children marked with a 0 after this, we repeat the process at

level d− 2, and so on.) It then “loads the positions of the children of u”– the tree being randomly

generated, this is implemented by Ld being randomly sampled and xd set to be all zeros – and

proceeds.

While there are
∏d

i=1 bi leaf nodes in the ideal random tree, the algorithm’s traversal of them

may skip a fraction, because they (or one of their ancestors) were marked as unsafe. We say that

all leaf nodes skipped or traversed over have been killed.

3.10.2 Setting parameters and bounding space

Algorithm 3.10.1 uses the following lemma to set some of its parameters; the specific rounding

scheme for the values b2, . . . , bd−1 ensures that b1 can decrease relatively smoothly as ℓ decreases.

18

18Setting all b2 = . . . = bd−1 to ⌊α⌋ can lead to having b1 be significantly larger than necessary (by up to a factor
(3/2)d = ℓΩ(1) for certain ℓ,n); setting all b2 = . . . = bd−1 to ⌈α⌉ would violate the

∏d
i=1 wi ≤ n constraint.

87

Algorithm 3.10.1 Adversarially robust random tape algorithm for mif(n, ℓ) with error ≤ δ
Requirements: ℓ ≤ n/64 and ℓ ≥ 4.

Parameters: d = min(⌈log ℓ⌉,
⌊
2 log(n/4)

log 16ℓ

⌋
).

α =

2 if ⌈log ℓ⌉ <
⌊
2 log(n/4)

log 16ℓ

⌋
(4ℓ)2/(d−1)

(n/4)2/(d(d−1)) otherwise

Let u be chosen via Lemma 3.10.1, so that αd−2 ≤
∏d−1

i=2 bi ≤ 2αd−2

b2 = . . . = bu = ⌈α⌉, and bu+1 = . . . = bd−1 = ⌊α⌋
b1 = min(ℓ+ 1, ⌈8α⌉+ ⌈3 log 1/δ⌉); and bd =

⌈
ℓ

αd−1

⌉
w1 = 16ℓ; and for each i ∈ {2, . . . , d}, wi =

∏d
j=i bj .

Let ι : [w1]× [w2]× · · · × [wd]→ [n] be an arbitrary injective function

Initialization:
1: for i ∈ [d] do
2: Li ← random sequence without repetition in [wi]

bi

3: xi ← (0, . . . , 0) ∈ {0, 1}bi

Update(a ∈ [n]):
4: if a /∈ ι−1([n]) then return ▷ Any integer not in ι−1([n]) can never be an output

5: v1, . . . , vd = ι−1(a) ▷ Map input into [w1]× . . .× [wd]
6: For i ∈ [d], define ci = min |{j : xi[j] = 0}|
7: if for all i ∈ [d], vi = Li[ci] then
8: ▷ Move to the next leaf node, sampling new child node positions as necessary
9: for i = d, . . . , 1 do

10: xi[ci]← 1
11: if xi is the all-1s vector then
12: if i = 1 then abort ▷ If we reach i = 1, then even the root node is full

13: Li ← random sequence without repetition in [wi]
bi

14: xi ← (0, . . . , 0)
15: else break
16: else
17: ▷ Mark a branch as unsafe, if there was a hit
18: Let j be the smallest integer in [d] for which vj ̸= Lj [cj].
19: if ∃y ∈ [bj] for which Lj [y] = vj then
20: xj [y]← 1

Output → [n]:
21: For i ∈ [d], define ci = min |{j : xi[j] = 0}|
22: return ι[(L1[c1], L2[c2], . . . , Ld[cd])]

88

Lemma 3.10.1. Let α ≥ 1. Then for all k ≥ 0, there exists an integer u depending on α and k so

that

αk ≤ ⌈α⌉u⌊α⌋k−u ≤ 2αk .

Proof of Lemma 3.10.1. If α is an integer, we are done. Otherwise, with

u =

⌈
k log(α/⌊α⌋)
log(⌈α⌉/⌊α⌋)

⌉
, we have ⌈α⌉u⌊α⌋k−u = ⌊α⌋k(⌈α⌉/⌊α⌋)u ≥ ⌊α⌋k(⌈α/⌊α⌋⌉)k = αk .

Similarly, ⌈α⌉u⌊α⌋k−u ≤ αk⌈α⌉/⌊α⌋, which is ≤ 2αk because α ≥ 1 implies ⌈α⌉/⌊α⌋ ≤ 2.

The following lemma establishing properties of the algorithm parameters is straightforward but

tedious:

Lemma 3.10.2. The parameters of Algorithm 3.10.1 satisfy the following conditions:

d∏
i=2

bi ≥
ℓ

α
(3.34)

d∏
i=2

bi ≤
4ℓ

α
(3.35)∏

i∈[d]

wi ≤ n . (3.36)

Proof of Lemma 3.10.2. First, we handle the case where ⌈log ℓ⌉ <
⌊
2 log(n/4)

log 16ℓ

⌋
. Then d = ⌈log ℓ⌉ ≤⌊

2 log(n/4)
log 16ℓ

⌋
− 1, and α = 2. Note that ℓ

2d−1 ≥ 1 since 2d−1 ≤ 2⌈ℓ⌉−1 ≤ 2ℓ/2 = ℓ.

d∏
i=2

bi =

⌈
ℓ

2d−1

⌉
2d−2 ≥ ℓ

2
=
ℓ

α

d∏
i=2

bi =

⌈
ℓ

2d−1

⌉
2d−2 ≤ 2

ℓ

2
≤ 4ℓ

α
.

Since bd =
⌈

ℓ
2d−1

⌉
=
⌈

2ℓ
2⌈log ℓ⌉

⌉
≤ 2,

∏
i∈[d]

wi = (16ℓ)
d∏

i=2

d∏
j=i

bj ≤ (16ℓ)

d∏
i=2

2d−i+1 = (16ℓ)2d(d−1)/2

≤ (16ℓ)(2⌈log ℓ⌉)(d−1)/2 ≤ (16ℓ)(2ℓ)(d−1)/2

≤ (16ℓ)(2ℓ)
(
⌊
2
log(n/4)
log 16ℓ

⌋
−2)/2

≤ (16ℓ)(2ℓ)
log(n/4)
log 16ℓ

−1

89

≤ (16ℓ)
log(n/4)
log 16ℓ ≤ n

4
≤ n .

Second, we consider the case where d =
⌊
2 log(n/4)
log(16ℓ)

⌋
. Because n ≥ 64ℓ, d ≥ 2, and so

d =

⌊
2
log(n/4)

log 16ℓ

⌋
≥ 2

3
· 2log(n/4)

log 16ℓ
=

log(n/4)
3
4 log 16ℓ

≥ log(n/4)

log 4ℓ
.

The second inequality used that 3
4(4 + log ℓ) ≤ (2 + log ℓ) for ℓ ≥ 4. Consequently,

α =

(
(4ℓ)d

n/4

) 2
d(d−1)

≥

(4ℓ)
log(n/4)
log 4ℓ

n/4

 2
d(d−1)

=

(
n/4

n/4

) 2
d(d−1)

= 1 .

We now prove Eq. (3.34). Because
∏d−1

i=2 bi ≥ αd−2,

d∏
i=2

bi =

⌈
ℓ

αd−1

⌉ d−1∏
i=2

bi ≥
ℓ

α
∏d−1

i=2 bi
·
d−1∏
i=2

bi =
ℓ

α
.

For Eq. (3.36), we observe that

d ≤ 2
log(n/4)

log(16ℓ)
=⇒ 16ℓ ≤ (n/4)2/d =⇒ ℓ ≥ αd−1 =

(4ℓ)2

(n/4)2/d
,

and thus ℓ/αd−1 ≥ 1, so bd =
⌈
ℓ/αd−1

⌉
≤ 2ℓ/αd−1. Then since

∏d−1
i=2 bi ≤ 2αd−2,

d∏
i=2

bi ≤
2ℓ

αd−1

d∏
i=2

bi ≤
4ℓ

α
∏d−1

i=2 bi
·
d−1∏
i=2

bi ≤
4ℓ

α
.

Finally, we prove Eq. (3.36). As noted above,

bd ≤
2ℓ

αd−1
≤ 4ℓ

α
∏d−1

i=2 bj
.

Applying this fact to bound the left hand side of Eq. (3.36) gives:

∏
i∈[d]

wi = (16ℓ)

d∏
i=2

d∏
j=i

bj = 16ℓ(bd)
d
d−1∏
i=2

d−1∏
j=i

bj

≤ 16ℓ

(
4ℓ

α
∏d−1

i=2 bj

)d−1 d−1∏
i=2

d−1∏
j=i

bj

≤ 4 · (4ℓ)d

αd−1

1∏d−1
i=2

∏i−1
j=2 bj

90

≤ 4 · (4ℓ)d

αd−1

1

α(d−1)(d−2)/2
since

d−1∏
j=2

bj ≥ αd−2 and b2 ≥ b3 ≥ . . . ≥ bd−1

=
4 · (4ℓ)d

αd(d−1)/2
=

4 · (4ℓ)d
(4ℓ)d

n/4

= n .

Lemma 3.10.3. Algorithm 3.10.1 uses

O

(⌈
(4ℓ)2/(d−1)

(n/4)2/(d(d−1))

⌉
(log ℓ)2 +min(ℓ, log 1/δ) log ℓ

)
(3.37)

bits of space, where d = min
(
⌈log ℓ⌉,

⌊
2 log(n/4)
log(16ℓ)

⌋)
. A weaker upper bound on this is:

O
(
ℓ

log ℓ
logn (log ℓ)2 +min(ℓ, log 1/δ) log ℓ

)
.

Proof of Lemma 3.10.3. Algorithm 3.10.1 only stores two types of data: for each i ∈ [d], the vectors

Li ∈ [wi]
bi , and the vectors xi ∈ {0, 1}bi . These can be stored using bi logwi and bi, bits respectively,

for a total of:

∑
i∈[d]

bi log(2wi) ≤ b1 log(2w1) +
d∑

i=2

bi log(2wi)

≤ b1 log(32ℓ) +
d∑

i=2

bi log(2

d∏
j=i

bi) ≤
d∑

i=1

bi log(32ℓ) ,

since by Eq. 3.35,
∏d

j=i bi ≤ 4ℓ.

We now observe that bd ≤ ⌈α⌉. If d = ⌈log ℓ⌉, then α = b2 = . . . = bd−1 = 2 and bd =⌈
ℓ/αd−1

⌉
≤ 2. On the other hand, if d =

⌊
2 log(n/4)
log(16ℓ)

⌋
, then α = (4ℓ)2/(d−1)

(n/4)2/(d(d−1)) . We have:

(4ℓ)d+1 = (4ℓ)

⌊
2
log(n/4)
log(16ℓ)

⌋
+1 ≥ (4ℓ)

2
log(n/4)
log(16ℓ) = (n/4)2 ,

which implies

α =
(4ℓ)2/(d−1)

(n/4)2/(d(d−1))
≥ (4ℓ)2/(d−1)

(4ℓ)(d+1)/(d(d−1))
= (4ℓ)(2−

d+1
d

)· 1
d−1 = (4ℓ)

1
d .

Consequently,

bd =

⌈
ℓ

αd−1

⌉
=

⌈
1

4

4ℓ

αd−1

⌉
≤
⌈
1

4
(4ℓ)1/d

⌉
≤ (4ℓ)1/d ≤ α .

With the bound on bd, and the fact that α ≥ 1 in both cases, and that d ≤ ⌈log ℓ⌉ we obtain a

91

bound on the sum of the list lengths:

∑
i∈[d]

bi ≤ min(ℓ+ 1, ⌈8α⌉+ ⌈3 log 1/δ⌉) + (d− 1)⌈α⌉

≤ min(ℓ, ⌈3 log 1/δ⌉) + (7 + d)2α

≤ min(ℓ, ⌈3 log 1/δ⌉) + 32 log ℓ

⌈
(4ℓ)2/(d−1)

(n/4)2/(d(d−1))

⌉
.

Multiplying this last quantity by log(32ℓ) gives a space bound.

To obtain a much weaker, but somewhat more comprehensible upper bound on α, when d =⌊
2 log(n/4)
log(16ℓ)

⌋
, we note that:

max
λ∈N∩[2,∞)

log
(4ℓ)2/(λ−1)

(n/4)2/(λ(λ−1))
≤ log max

λ∈R∩[2,∞)

(
2

λ− 1
log(4ℓ)− 2

λ(λ− 1)
log(n/4)

)
≤ log

(
2 log(4ℓ) max

λ∈R∩[2,∞)

(
1

λ− 1
− 1

λ(λ− 1)

log(n/4)

log(4ℓ)

))
.

Let γ = log(n/4)
log(4ℓ) ; this is ≥ 1. Let f(x) = 1

x−1(1 −
γ
x). We will now prove that maxx≥2 f(x) ≤ 1

2γ .

We note that when x = 2, we have:

f(2) = 1− γ

2
≤ 1

2γ
.

Checking the other endpoint, we have:

lim
x→∞

1

x− 1
(1− γ

x
) = 0 .

Since f(x) is differentiable on [2,∞), if it has a maximum other than at the endpoints, then it will

occur when d
dxf(x) = 0. Solving this equation, we obtain:

d

dx
f(x) = − 1

(x− 1)2
+

γ (2x− 1)

(x (x− 1))2
= − 1

(x− 1)2

[
1− γ (2x− 1)

x2

]
= 0 ,

which is true iff x2 = γ(2x− 1). The solutions to the quadratic equation are

x = γ −
√
γ (γ − 1) and x = γ +

√
γ (γ − 1) .

Since γ ≥ 1, the − branch has x ≤ 1, which is not in [2,∞). The + branch is only in [2,∞) if

γ ≥ 4
3 . The value of f(x) in this case is:

f(γ +
√
γ (γ − 1)) =

1

γ +
√
γ (γ − 1)− 1

(
1− γ

γ +
√
γ (γ − 1)

)

92

=

√
γ(γ − 1)

2γ − 1 + 2
√
γ(γ − 1)

≤ 1

4
√
γ(γ − 1)

(since
√
γ(γ − 1) ≤ 2γ − 1 for all γ ≥ 1)

≤ 1

2γ
. (since γ ≤ 2

√
γ(γ − 1) for all γ ≥ 4

3
)

Thus, if f(x) does have a maximum in [2,∞), it is ≤ 1
2γ . We conclude that f(x) ≤ 1

2γ in all cases.

This proves:

logα ≤ max
λ∈N

log
(4ℓ)2/(λ−1)

(n/4)2/(λ(λ−1))
≤ log

2 log(4ℓ)
1

2 log(n/4)
log(4ℓ)

 ≤ log
log(4ℓ)2

log(n/4)
.

3.10.3 The error bound

We now prove the main lemma:

Lemma 3.10.4. Algorithm 3.10.1 has error ≤ δ in the adversarial setting.

Proof of Lemma 3.10.4. We prove, using a charging scheme, that the probability of all leaf nodes

in the random tree traversed by the algorithm being killed is ≤ δ.
The input of the adversary at any step falls into one of d + 2 categories. For each i ∈ [d], the

adversary could add an input which intersects the list of unrevealed child positions of the level i

node, possibly killing
∏d

j=i+1 bi leaf nodes if it guesses correctly. It could also send the value of the

current leaf node, thereby killing it (and only it). Finally, the adversary’s input could be entirely

wasted (outside ι([w1]× . . .× [wd], repeating an input it made before, or in the region corresponding

to one of the past nodes in the random tree); then no leaf nodes would be killed.

As the algorithm proceeds, for each node in the random tree (other than the root), we accu-

mulate charge. When the algorithm’s current branch changes to use new nodes, the charge on the

old nodes is kept, and the new nodes start at charge 0.

When the algorithm makes a query at level i, for i ∈ {2, . . . , d}, it first deposits one unit of

charge at the active level i node. Then, if the query was a hit (i.e, ruled out some future subtree and

made a child of a node in the current branch change from “safe” to “unsafe”), increase the number

of killed nodes by the number of leaves for the subtree (namely,
∏d

j=i+1 bj), and remove up to that

amount of charge from the node. The definitions of (wj)j=2,...,d ensure that
∏d

j=i+1 bj = wj/bj .

For the tth query, let Kt be the number of killed leaf nodes on the query, minus any accumulated

charge on the node. Say the adversary picks a node at level i for i ∈ {2, . . . , d− 1}, and that node

has ŵ unexplored subtree regions (i.e, neither revealed because the algorithm produced outputs

in them, nor was there a query at that subtree region in the past), and b̂ gives the number of

subtrees within this unexplored region. If b̂ = 0, E[Kt|K1, . . . ,Kt−1] = 0. Otherwise, let u be

93

the number of subtrees which were revealed by the algorithm so far; we have ŵ ≤ wj − u and

b̂ ≤ bj − u. Then when we condition on the past increases in charge, the subtree regions within

the unexplored region are still uniformly random; hence the probability of hitting a subtree is b̂/ŵ.

The number of leaf nodes killed by a hit is wj/bj . The total charge currently at the node must be

≥ (wj − u − ŵ) − (
wj

bj
)(bj − u − b̂) = b̂

wj

bj
− ŵ + (

wj

bj
− 1)u ≥ b̂

wj

bj
− ŵ, since each removed node

consumes at most
wj

bj
of the existing charge. Consequently, the increase in killed leaf nodes if we

hit is max(0,
wj

bj
−max(0, b̂

wj

bj
− ŵ)), so the expected19 payoff is:

E[Kt|K1, . . . ,Kt−1] =
b̂

ŵ
max(0,

wj

bj
−max(0, b̂

wj

bj
− ŵ)) ≤

by Lemma 3.10.5
1 .

If the level is 1, then let J ⊆ [16ℓ] give the set of probed subtree positions, and H give the set of

revealed subtree positions; since there are ≤ ℓ queries, |J |, |H| are both ≤ ℓ, and the probability of

a query in an unexplored region to hit is ≤ b1
16ℓ−|J∪H| ≤

b1
14ℓ . The charging scheme does not apply

at this level, so:

E[Kt|K1, . . . ,Kt−1] ≤
b1
14ℓ
·

d∏
j=2

bj .

Thus in all cases, E[Kt|K1, . . . ,Kt−1] ≤ max(1,
∏d

j=1 bj/14ℓ).

Note: the total charge deposited on mid-level nodes is ≤ ℓ. The algorithm is guaranteed

to succeed if the total number of leaves killed is less than the total number of leaves; i.e, if∑
i∈[ℓ]Kt+ℓ ≤

∏d
j=1 bj . Note that by Lemma 3.10.2 and the definition of b1,

∏d
j=1 bj ≥ b1ℓ/α ≥ 8ℓ.

Consequently,

ℓ+ 7E[
ℓ∑

t=1

Kt] ≤ 8max(ℓ,
1

14

d∏
j=1

bj) ≤ 8max(
1

8
,
1

14
)

d∏
j=1

bj ≤
d∏

j=1

bj .

Now let Dt = Kt/
∏d

j=2 bj , so that each Dt ∈ [0, 1]. Writing events in terms of Dt lets us use

Lemma 2.3.1 to bound the probability that too many leaves are killed:

Pr

ℓ+∑
t∈[ℓ]

Kt ≥
d∏

i=1

bi

 ≤ Pr

∑
t∈[ℓ]

Kt ≥ 7max(ℓ,
1

14

d∏
j=1

bj)


≤ Pr

∑
t∈[ℓ]

Dt ≥ 7max(ℓ/
d∏

j=2

bj ,
b1
14

)


≤ exp(− 62

2 + 6
max(ℓ/

d∏
j=2

bj ,
b1
14

))

19When the level is d and bj = wj , we in fact we have Kt = 1 always; but we do not need this stronger fact.

94

≤ exp(−9b1
28

) ≤ 2b1
9

28 ln 2 ≤ 2⌈3 log 1/δ⌉
9

28 ln 2 ≤ δ .

In the preceding proof, we used the following:

Lemma 3.10.5. Let b̂, ŵ, b, w be positive, and b̂ ≥ 1. Then:

b̂

ŵ

(
max(0,

w

b
−max(b̂

w

b
− ŵ, 0))

)
≤ 1 .

Proof of Lemma 3.10.5. If b̂
ŵ ≤

b
w , then:

b̂

ŵ

(
max(0,

w

b
−max(b̂

w

b
− ŵ, 0))

)
≤ b̂

ŵ

w

b
≤ 1 .

Otherwise, b̂
ŵ ≥

b
w , and:

b̂

ŵ

(
max(0,

w

b
−max(b̂

w

b
− ŵ, 0))

)
≤ b̂

ŵ
(
w

b
− (b̂

w

b
− ŵ)) = b̂

ŵ
(
w

b
− b̂(w

b
− ŵ

b̂
))

≤ b̂

ŵ
(
w

b
− 1(

w

b
− ŵ

b̂
)) =

b̂

ŵ

ŵ

b̂
= 1 . since b̂ ≥ 1 and

w

b
− ŵ

b̂
≥ 0

If ℓ ≥ 4 and ℓ ≤ n/64, then Lemma 3.10.3 and Lemma 3.10.4 together show that Algo-

rithm 3.10.1 has error ≤ δ and space usage as bounded by Eq. 3.37. To handle the cases where

ℓ < 4 and ℓ > n/64, one can instead use the simple deterministic algorithm for mif(n, ℓ) from

Algorithm 3.1.1, using only ℓ bits of space. As this is in fact less than the space upper bound from

Eq. 3.37, it follows that Eq. 3.37 gives an upper bound on the space needed for a random tape,

adversarially robust mif(n, ℓ) algorithm for any setting of parameters. Formally:

Theorem 3.10.6. There is a family of adversarially robust random tape algorithms, where for

mif(n, ℓ) the corresponding algorithm has ≤ δ error and uses

O

(⌈
(4ℓ)

2
d−1

(n/4)
2

d(d−1)

⌉
(log ℓ)2 +min(ℓ, log 1

δ) log ℓ

)

bits of space, where d = max
(
2,min

(
⌈log ℓ⌉,

⌊
2 log(n/4)
log(16ℓ)

⌋))
. At δ = 1/ poly(n) this space bound is

O
(
ℓlogn ℓ(log ℓ)2 + log ℓ log n

)
.

Remark 3.10.7. Algorithm 3.10.1 does not use the most optimal assignment of the parameters

bd, . . . , b2; constant-factor improvements in space usage are possible if one sets bd, . . . , b2 to be

roughly in an increasing arithmetic sequence, but this would make the analysis more painful.

95

Remark 3.10.8. In exchange for a constant factor space increase, one can adapt Algorithm 3.10.1 to

produce an increasing sequence of output values. Similar adjustments can be performed for other

mif algorithms.

3.11 Random tape lower bound, adversarial setting

In this section, we prove a space lower bound for random tape algorithms in the adversarial setting,

focusing on the regime where δ = O(ℓ/n). In particular, we show how to write the space lower

bound for algorithms for mif(n, ℓ) as a function of a space lower bound for mif(w, t), where, if z

is the number of bits of state of an algorithm, w = Θ(zn/ℓ) and t = Θ(n/z). For small enough z,

t/w ≫ ℓ/n, so by repeating this reduction step a few times we can increase the ratio of the stream

length to the input domain size until we can apply the Ω(ℓ̂2/n̂) lower bound for mif(n̂, ℓ̂) from

Theorem 3.3.5. With the right number of reduction steps, one obtains the lower bound formula of

Theorem 3.11.7.

One way to see the reduction step is as showing that every z-bit algorithm for mif(n, ℓ) “con-

tains” a z-bit algorithm for mif(w, t), which on being given t elements from a set W ⊆ [n] of size

w, will repeatedly produce elements in W which were not in the input. That such a set exists

can be seen as a consequence of the lower bound for the avoid communication problem: if a z-bit

algorithm for mif(n, ℓ) receives a random sequence S of ℓ/2 elements in [n], then because there are

many more subsets in
([n]
ℓ/2

)
than the algorithm has states, most of the 2z states of the algorithm

will need to work for an Ω(2−z) fraction of all subsets. In particular, once it has reached a given

state σ, for the algorithm to have a low probability of outputting a colliding element, it must avoid

most of the sets of inputs that could lead to σ. In Lemma 3.9.2, we proved by a counting argument

that after the random sequence S is sent, each state σ has an associated set Hσ of possible “safe”

outputs which are unlikely to collide with the inputs from S, and that |Hσ| is typically O(zn/ℓ).

For an algorithm to have error probability O(ℓ/n), it must (most of the time) keep all of

its outputs inside Hσ; in other words, the algorithm must contain a “sub-algorithm” solving

mif(O(zn/ℓ), ℓ/2) on the set W = Hσ, for some σ. However, even though there exists a set

W on which the algorithm will concentrate its outputs, it may not be possible for an adversary to

find it. In particular, for random oracle algorithms, there may be a different value of W for each

possible setting of the random string, makingW practically unguessable. However, as shown in the

proof of Lemma 3.7.1, the limited number of states makes it possible to learn information about

random seed algorithms. Here, for random tape algorithms, we can do something similar.

In our core lemma, Lemma 3.11.3, we design an adversary (Adversary 3.11.1) that can with Ω(1)

probability identify a setW of size Θ(zn/ℓ) for which the next Θ(ℓ/z) outputs of the algorithm will

be contained inW , with Ω(1) probability, no matter what inputs the adversary sends next. In other

96

words, our adversary will identify a region where the algorithm solves mif(Θ(zn/ℓ),Θ(ℓ/z)). The

general strategy is to use a win-win type iterative search. First, the adversary will send a random

subset of size ℓ/2 to the algorithm, to ensure that afterwards the outputs of the algorithm are

contained in some (unknown) set Hρ. Because the algorithm has ≤ 2z states, from the adversary’s

perspective there are ≤ 2z possible candidates for Hρ. Then, the adversary will make O(z) steps

of t = O(ℓ/z) elements each, in which either:

1. There exists a “sub-adversary” (function to choose the next t inputs, one by one) which will

probably make the algorithm output an element that rules out a constant fraction of the

candidate values for Hρ. (The details are relatively simple: output i rules out set J if i /∈ J .)

2. No matter how the adversary picks the next t inputs, there will be a set W (roughly, an

“average” of the remaining candidate sets) which will probably contain the next t outputs of

the algorithm.

As the set of candidate sets can only shrink by a constant fraction O(z) times, the first case can

only happen O(z) times, with high probability. Thus, eventually, the adversary will identify a set

W . Once it has done so, it runs the optimal adversary for mif(Θ(zn/ℓ),Θ(ℓ/z)). This essentially

reduces the lower bound for mif(ℓ, n) to that of mif(Θ(zn/ℓ),Θ(ℓ/z)).

Definition 3.11.1. It is helpful to distinguish between two types of failure for an algorithm for

mif(n, ℓ). An algorithm Amakes an incorrect output, or mistake, for mif(n, ℓ) if outputs an element

that was already in the input stream. It also has the option of “aborting” – outputting an error

value like ⊥, which is clearly not valid.

This distinction is useful because, if we take an algorithm for mif(n, ℓ), conditioned on producing

some initial transcript of outputs in response to an input sequence, we may obtain an algorithm

for mif(|W |, t) for some t ≤ ℓ and W ⊆ [n]; the probability that the algorithm “aborts” (produces

an output outside of W) can be much larger than the probability that the algorithm makes an

incorrect output (output in W that collides with an earlier input.). In the following proofs the

algorithm aborting will be bad for the adversary, and it making an incorrect output will be good.

For integers n, ℓ, z with 1 ≤ ℓ < n, and γ ∈ [0, 1], let Algsn,ℓ,z,γ be the set of all z-bit random

tape algorithms for mif(n, ℓ) which on any adversary abort with probability ≤ γ.

∆(n, ℓ, γ, z) := min
A in Algsn,ℓ,z,γ

δ(A, n, ℓ, γ) ,

where δ(A, w, t) is the maximum, over all possible adversaries, probability thatAmakes an incorrect

output. As a consequence of the definition, ∆(n, ℓ, γ, z) is non-increasing in γ and z.

97

Lemma 3.11.2. Random tape algorithms for MissingItemFinding(n, ℓ) which do not abort often

have high error if they use too little space:

∆(n, ℓ, γ, z) ≥ 1

4
1z≤ℓ2/(16n ln 2)1γ≤1/2 . (3.38)

Proof of Lemma 3.11.2. This follows from the space lower bound for random oracle algorithms

in the adversarial setting. A random tape algorithm for mif(n, ℓ) with z bits of space, worst-case

probability of error δ, and worst-case probability of aborting γ can used to implement a z-bit public

coin communication protocol for avoid(n, ⌈ℓ/2⌉, ⌊ℓ/2⌋+1) with success probability ≥ 1− γ − δ as

described in the proof of Theorem 3.3.5. By the lower bound for avoid, Lemma 3.3.2,

z >
ℓ2

4n ln 2
+ log(1− γ − δ) .

For γ ≤ 1/2, if δ ≤ 1/4, then z ≥ ℓ2

4n ln 2 − 2. Furthermore, by Lemma 3.1.2, z ≥ log(ℓ + 1) > 1,

so then z ≥ max(1, ℓ2

4n ln 2 − 2) > ℓ2

16n ln 2 , since max(1, x − 2) > x/4. Taking the contrapositive, if

z ≤ ℓ2

16n ln 2 , then δ > 1/4. This proves Eq. 3.38.

3.11.1 The induction step

First, recall:

Lemma 3.9.2. Let Σ be a set, n and q integers, and P a function from
(
[n]
q

)
to△[Σ], where |Σ| ≤ 2z.

Let F be a random function
(
[n]
q

)
→ Σ in which for all x ∈

(
[n]
q

)
and σ ∈ Σ, Pr[F (x) = σ] = P (x)(σ),

and let X be a uniformly random element of
(
[n]
q

)
, chosen independently of F . For each σ ∈ Σ,

define

Hσ =
{
i ∈ [n] : Pr [i ∈ X | F (X) = σ] ≤ q

4n

}
.

For any α ∈ (0, 1),

Pr
[∣∣HF (X)

∣∣ ≥ ŵ] ≤ α where ŵ :=

⌈
z + 1 + log 1

α

q
n

2 ln 2

1− ln 2

⌉
.

Lemma 3.11.3. Let 1 ≤ ℓ < n, z be integers, and γ ∈ [0, 12]. Let α > 0 be a real value satisfying

z ≥ 2 log(8/α). Define, matching definitions in Adversary 3.11.1,

w = 2
⌊
32
zn

ℓ

⌋
and hmax = ⌈8z/α⌉ and t =

⌊
ℓ

2hmax

⌋
.

98

If t < w, then there is a distribution µ ∈ △[0, 1] for which EG∼µG ≤ γ + α and:

∆(n, ℓ, γ, z) ≥ min

(
ℓα

32n
,
(1
2
− α

)
EG∼µ∆(w, t,G, z)

)
. (3.39)

Adversary 3.11.1 Adversary for a random tape mif(n, ℓ) algorithm, with parameter α ∈ (0, 1).

Let: w = 2
⌊
32 zn

ℓ

⌋
, hmax = ⌈8z/α⌉, and t =

⌊
ℓ

2hmax

⌋
Let Σ be the set of states of the algorithm

Adversary
1: v ← a uniformly random vector in sort

([n]
⌈ℓ/2⌉

)
.

2: send v to the algorithm
3: Let P : sort

([n]
⌈ℓ/2⌉

)
→ △[Σ] map possible values of v to the resulting distribution over states

in Σ20

4: Compute Hσ for each state σ per Lemma 3.9.2, using P .
5: Let Q0 = {σ ∈ Σ : |Hσ| ≤ 1

2w}
6: for h in 1, . . . , hmax do
7: Let D be the distribution over alg. states conditioned on the transcript so far
8: if ∃ a (α/2)-splitting t-length deterministic adversary Υ for Qh−1 given D then
9: run Υ against the algorithm, and let y ∈ [n]t be the output

10: Qh ← {σ ∈ Qh−1 : y ⊆ Hσ} ▷ With ≥ α/2 probability, |Qh| ≤ 1
2 |Qh−1|

11: if Qh = ∅ then abort

12: else
13: W ← {i ∈ [n] : |{σ ∈ Qh−1 : i ∈ Hσ}| ≥ 1

2 |Qh−1|}.
14: Let W ′ ←W plus w − |W | padding elements
15: Define t-step sub-algorithm B to behave like the given algorithm, conditioned on the

exact transcript made so far
16: Let Ξ be a adversary (making inputs in W ′) maximizing the probability that B makes

an incorrect output
17: ▷ If B produces an output outside of W ′, we interpret this as B having aborted, not as

having made an incorrect output
18: run adversary Ξ against the algorithm
19: return
20: abort

In order to explain Adversary 3.11.1, we will need the following definitions:

Definition 3.11.4. Let Q be a set of states, where each state has an associated set Hσ.

A sequence y in [n]t is said to be divisive for Q if |{σ ∈ Q : y ⊆ Hσ}| ≤ 1
2 |Q|.

Say Υ is a t-length deterministic adversary. (That is, a function which maps vectors in [n]⋆

of length ≤ t − 1 (including the zero-length vector) to values in [n].) For any state σ ∈ Σ of the

algorithm, let G(σ,Υ) be the random variable in [n]t which gives the output if we run the random

20For example: let A be an instance of the algorithm. Then for any vector v ∈ sort
(

[n]
⌈ℓ/2⌉

)
, P (v)(σ) =

Pr[the state of A just after receiving v is σ]

99

adv. choice of v

width ∼ probability (over adv. and alg.). Vertical lines divide different transcripts.

alg. response

stage h=1

stage h=2

stage 3=hmax

R R

R
running
error‐maximizing
subadversary

Running best
splitting
subadversary

sending random
sorted subset

algorithm
aborted

algorithm made
unsafe output
(risking mistake)

adversary
out of time
(exists splitting
subadversary)

TM

M

M M

MM

M
MM

RR R R RR

RRRRR R R R

R

R R R RR

R

RR R RTT
T R

R

T T TTT

Figure 3.10: Warning: This is a simplified example, and the proof of Lemma 3.11.3 includes
subtleties not shown here. The diagram shows how, as time (downward direction) progresses,
the algorithm-adversary pair produce different transcripts of (input, output) pairs. The y-value at
which a vertical line starts indicates the time at which the transcript could diverge. The probabilities
of events are proportional to the width of their rectangles. The four terminal events (marked by
R, M, T, black) in this diagram roughly correspond to Line 18 of Adversary 3.11.1 being reached;
the event Brepeat occurring (in which case the algorithm has might make a mistake); the event
Bincomplete occuring; and the event Babort occurring, respectively. In reality, the algorithm can
still abort or have Brepeat occur during the R and T events.

seed algorithm, starting at state σ, against the adversary Υ. (If after running for a few steps the

algorithm has output vector v ∈ [n]⋆, its next input will be Υ(v).) We define an adversary to be

β-splitting for Q against a distribution D ∈ △[Σ] if, when we choose a random state S from D,

Pr[G(S,Υ) is divisive for Q] ≥ β .

Proof of Lemma 3.11.3. To prove the lower bound in Eq. 3.39, we show that when Adversary 3.11.1

is run against a z-bit random-tape algorithm A for mif(n, ℓ) which has ≤ γ worst-case probability

of aborting, the probability that A produces an incorrect output is at least the right hand side

of 3.39. Note that the adversary described in Adversary 3.11.1 makes at most ⌈ℓ/2⌉ + thmax =

⌈ℓ/2⌉ + ⌊ℓ/(2hmax)⌋hmax ≤ ⌈ℓ/2⌉ + ⌊ℓ/2⌋ = ℓ inputs. A figure giving an example of how the

adversary-algorithm pair could evolve is given in Figure 3.10.

When we run Adversary 3.11.1 against A, let ρ be the state of A after v is sent. We define a

number of events:

• Brepeat occurs if A produces an output in [n] \Hρ.

100

• Bbig occurs if the state ρ has Hρ >
1
2w.

• Bincomplete occurs if the adversary aborts without executing Line 18.

• Babort occurs if A aborts before the adversary reaches Line 18.

• Rabort occurs if A aborts while the adversary is executing Line 18.

• Rerror occurs if A produces an incorrect output while the adversary is executing Line 18.

We individually consider some of the events listed above.

Brepeat The probability that this occurs depends on the algorithm. If Brepeat occurs, then some

i ∈ [n] \ Hρ is output, and there is a ≥ ⌈ℓ/2⌉
4n ≥ ℓ

8n probability that the set v from Line 1

contained ρ, conditioned on the algorithm reaching state ρ. Consequently, the probability

that the algorithm fails because it produces an output which overlaps with the past input v

is ≥ Pr[Brepeat]
ℓ
8n . If Pr[Brepeat] ≥ α/4, then ∆(n, ℓ, γ, z) ≥ ℓα

32n , which implies Eq. 3.39.

For the rest of this proof we will consider the case in which Pr[Brepeat] ≤ α/4.

Bbig We apply Lemma 3.9.2 to the function P , with

ŵ =

⌈
z + 1 + log(4/α)

⌈ℓ/2⌉
n

2 ln 2

1− ln 2

⌉
≤ 1 +

⌊
z + 1 + log(4/α)

⌈ℓ/2⌉
n

2 ln 2

1− ln 2

⌋
≤ 1 +

⌊
8 ln 2

1− ln 2

z + 1 + log(4/α)

ℓ
n

⌋
≤ 1 +

⌊
19
z + log(8/α)

ℓ
n

⌋
≤ 1 +

⌊
32
zn

ℓ

⌋
=

1

2
w + 1 .

since z ≥ 2 log(8/α). As 1
2w is an integer,

Pr

[
|Hρ| >

1

2
w

]
= Pr

[
|Hρ| ≥

1

2
w + 1

]
≤ Pr [|Hρ| ≥ ŵ] ≤ α/4 .

Bincomplete There are two ways in which the adversary can abort before reaching Line 18: if (Line 20)

either hmax loop iterations are performed without failing to find a splitting adversary, or if

(Line 11) at some point Qh = ∅. If Brepeat does not hold, then all outputs will be contained

by Hρ. Furthermore, if Bbig does not hold, then ρ is in Q0; and because all outputs are

contained in Hρ, the state ρ will not be filtered out of Qh on Line 10. Thus ρ ∈ Qh and the

abort on Line 11 will not be used.

We now bound the probability that the algorithm will abort using Line 20. For this to happen,

it must have picked hmax splitting adversaries, but fewer than z+1 of them must have produced

a divisive output. (If there is a divisive output in round h, then |Qh| ≤ 1
2 |Qh−1|; and if not,

101

then |Qh| ≤ |Qh1 |. Thus with z+1 divisive outputs, |Qhmax | ≤ |Q0|/2z+1 ≤ |Σ|/2z+1 ≤ 1
2 < 1,

in which case Line 11 would have been used instead.)

For each h ∈ [hmax], letXh be the {0, 1} indicator random variable for the event that a divisive

output is found in the hth step. (If the hth step did not occur or no splitting adversary

was found, set Xh = 1.) Since in the hth step, a splitting adversary for the distribution

for the current state of the algorithm, conditioned on the transcript so far, is chosen, then

E[Xh|X1, . . . , Xh−1] ≥ α/2.21 If not, then E[Xh|X1, . . . , Xh−1] = 1. Applying Lemma 2.3.1

gives:

Pr[
∑

h∈[hmax]

Xh < z + 1] = Pr

 ∑
h∈[hmax]

Xh ≤
(
1−

(
1− 2z

αhmax

))
αhmax

2


≤ exp

(
−1

2

(
1− 2z

αhmax

)2 αhmax

2

)

≤ exp

(
−1

8

αhmax

2

)
since hmax = ⌈8z/α⌉ ≥ 4z/α

= exp

(
−α
8

⌈
8z

α

⌉
1

2

)
≤ exp

(
−z
2

)
≤ α

8
since z ≥ 2 log(8/α) .

Thus, Pr[Bincomplete \ (Brepeat ∪ Bbig)] ≤ α
8 ≤

α
4 . (Note: if the algorithm aborts, the

adversary does not, so the event Babort is negatively correlated with Bincomplete.)

Babort This occurs with probability ≤ γ.

Now, say that the adversary does reach a point where it will execute Line 18. First, we prove

that |W | ≤ w. By Line 5, the set Q0 only contains states σ ∈ Σ with |Hσ| ≤ 1
2w. When W is

chosen on Line 13, the value of Qh−1 is a subset of Q0. By the definition of W , we have:

|W | =
∣∣∣∣{i ∈ [n]} : |{σ ∈ Qh−1 : i ∈ Hσ}|

|Qh−1|
≥ 1

2

}∣∣∣∣
≤
∑
i∈[n]

2
|{σ ∈ Qh−1 : i ∈ Hσ}|

|Qh−1|

= 2

∑
σ∈Qh−1

|Hσ|
|Qh−1|

≤ 2
1

2
w = w .

Next, we bound the probability that the algorithm in the next t steps will produce an output

outside W (or abort). The algorithm aborting is covered by event Rabort. When there is no deter-

ministic splitting adversary, there also is no randomized splitting adversary, since each randomized

adversary can be implemented by randomly picking a deterministic adversary from some distribu-

21While the adversary uses the state distribution conditioned on the transcript so far, this may actually be a bit
more fine grained than necessary. We suspect it is enough, in this part, for the adversary to condition onX1, . . . , Xh−1.

102

tion. Now, if there is no splitting adversary, for the distribution over current states D as defined

in Adversary 3.11.1, and for all t-step adversaries Υ, where G(·, ·) is as in Definition 3.11.4:

Pr
σ̂∼D

[G(σ̂,Υ) is divisive for Qh−1] ≤
α

2
.

If a given output y ∈ [n]t is not divisive, then for each i ∈ y,

|{σ ∈ Qh−1 : i ∈ Hσ}| ≥ |{σ ∈ Qh−1 : y ⊆ Hσ}| ≥
1

2
|Qh−1| .

which implies that i ∈ W . Thus in fact y ⊆ W . It follows that no matter which adversary is used

for the next t steps, the probability that the algorithm will produce an output outside W is ≤ α
2 .

The chosen adversary Ξ uses t steps and provides inputs on a set of size w. Let E be the event

that Line 18 is reached; so E = ¬Brepeat ∧¬Bincomplete ∧¬Bbig ∧¬Babort. Let G1 be the random

variable for the probability that A aborts, and G2 the random variable for the probability that

A makes an output outside of W ′; these are both only nonzero when E holds. (The value of G1

depends on the transcript of the algorithm up to Line 18, while G2 ≤ α/2 always.) As noted above,

for any transcript reaching Line 18, the probability of A producing an output outside W ′ is ≤ α
2 .

By Definition 3.11.1, the probability that A, when run against Ξ, will make an error is at least

∆(w, t,G1 +G2, z), because the algorithm A, conditioned on its transcripts of inputs and outputs

up to this point, will solve mif(w, t) with a worst-case probability ≤ G1 +G2 of aborting.

The total probability that the algorithm aborts is:

γ ≥ Pr[Babort] + Pr[Rabort] = Pr[Babort] + Pr[E]E[G1|E] .

Let Ĝ be a random variable distributed according to µ = (G1 +G2|E).

E[Ĝ] = E[G1|E] + E[G2|E] ≤ α

2
+

γ − Pr[Babort]

1− Pr[Babort]− Pr[¬E ∧ ¬Babort]

≤ α

2
+

γ

1− Pr[¬E ∧ ¬Babort]

=
α

2
+

γ

1− Pr[Brepeat ∨Bincomplete ∨Bbig]

≤ α

2
+

γ

1− 3α
4

≤ γ +
α

2
+ γα ≤ γ + α since γ ≤ 1/2 .

The probability that the algorithm makes an error in Line 18 is:

Pr[Rerror] ≥ Pr[E] · E[∆(w, t,G, z)|E]

≥ (1− Pr[Babort]− Pr[Brepeat ∨Bincomplete ∨Bbig)EĜ∼µ[∆(w, t, Ĝ, z)]

103

≥
(
1− γ − 3α

4

)
EĜ∼µ[∆(w, t, Ĝ, z)]

≥
(
1

2
− α

)
EĜ∼µ[∆(w, t, Ĝ, z)] .

Combining this lower bound with the lower bound for the case where Pr[Brepeat] >
α
4 , we obtain:

∆(n, ℓ, γ, z) ≥ min

(
αℓ

32n
,
(1
2
− α

)
EĜ∼µ[∆(w, t, Ĝ, z)]

)
.

3.11.2 Calculating the lower bound

Lemma 3.11.5. Let 1 ≤ ℓ < n. For any integer k ≥ 1, say that z is an integer satisfying

z ≤ 1
256k ℓ

1/k. Then:

∆(n, ℓ, 0, z) ≥ min

(
ℓ

212n
,

1

2k+5
1z≤L

)
where L =

1

256k

(
ℓk+1

n

) 2
k2+3k−2

. (3.40)

Consequently, algorithms for MIF with ≤ min(ℓ
212n

, 2−k−5) error require ≥ L bits of space.

Proof of Lemma 3.11.5. If k = 1, then Eq. 3.40 follows immediately from Lemma 3.11.2, so for the

rest of the proof we assume k ≥ 2.

For i = 1, . . . , k − 1, define αi = max(1
8·2i ,

1
8k). This sequence is chosen shrink gradually and

have α1 ≥ 1/16, while
∑k−1

i=1 αi ≤ 1
4 and all αi are ≥ 1/(8k).

Let n1 = n and ℓ1 = ℓ, and for i = 2, . . . , k, set ni = 2
⌊
32 zni−1

ℓi−1

⌋
and ℓi =

⌊
ℓi−1

2⌈8z/αi−1⌉

⌋
. This

matches the definitions used in Lemma 3.11.3. Note that:

ℓi ≥
⌊

ℓi−1

4 · 8z/αi−1

⌋
≥
⌊
ℓi−1αi−1

4 · 8z

⌋
≥
⌊
ℓi−1

256zk

⌋
,

so ℓ1 ≥ . . . ≥ ℓk, and in particular:

ℓk =

⌊
· · ·
⌊
ℓ

1

256zk

⌋
· · · 1

256zk

⌋
=

⌊
ℓ

(256zk)k−1

⌋
≥ 256zk . because z ≤ 1

256k
ℓ1/k

We will later use the fact that ℓk−1 ≥ (256zk)2. By Lemma 3.1.2, we can assume z ≥ log(ℓ+1), as

otherwise ∆(n, ℓ, 0, z) = 1. Thus, since k ≥ 2 and αi ≥ 1
8k , we have:

z ≥ log(ℓ+ 1) ≥ k log(64zk) ≥ k log(64k) ≥ 2 log(64k) ≥ 2 log
8

αi
.

for all i ∈ [k − 1].

We will lower bound ∆(n, ℓ, 0, z) by recursively applying Lemma 3.11.3 k − 1 times, and then

applying Lemma 3.11.2. When Lemma 3.11.3 is used, let µg,i be the distribution maximizing the

right hand side of Eq. 3.39 (with parameters ni, ℓi, and abort probability g). Define random

104

variables G1, . . . , Gk so that G1 = 0 and for i ≥ 2,

Gi ∼

µGi−1,i if Gi−1 ≤ 1/2

1/2 otherwise
.

Then:

∆(n, ℓ, 0, z) ≥ 1G1≤1/2min

(
ℓ1α1

32n1
,
(1
2
− α1

)
E∆(n, ℓ,G2, z)

)
≥ 1G1≤1/2min

(ℓ1α1

32n1
,(1

2
− α1

)
· E1G2≤1/2min

(ℓ2α2

32n2
,(1

2
− α2

)
· E1G3≤1/2min

(ℓ3α3

32n3
,

. . . E1Gk≤1/2 ·
1

4
1z≤ℓ2k/(16nk ln 2))

. . .
)))

≥ min
(
Pr[G1 ≤ 1/2]

ℓ1α1

32n1
,

Pr[G2 ≤ 1/2]
(1
2
− α1

) ℓ2α2

32n2
, . . . ,

Pr[Gk−1 ≤ 1/2]
k−2∏
i=1

(1
2
− αi

)ℓk−1αk−1

32nk−1
,

Pr[Gk ≤ 1/2]

k−1∏
i=1

(1
2
− αi

)1
4
1≤ℓ2k/(16nk ln 2)

)
.

The worst-case distribution µg,i for Lemma 3.11.3 is constrained by the property that

EG∼µg,iG ≤ g + αi. Consequently, for i ≥ 2, E[Gi] ≤ E[Gi−1] + αi−1 ≤ . . . ≤
∑k−1

i=1 αi ≤ 1
4 . Thus

by Markov’s inequality, for all i = 1, . . . , k, Pr[Gk ≤ 1/2] ≥ 1/2. Using the additional fact that

k−1∏
i=1

(
1

2
− αi) ≥

1

2k

k−1∏
i=1

(1− 2αi) ≥
1

2k
exp(−4

k−1∑
i=1

αi) ≥
1

2k
e−1 ,

the lower bound simplifies to:

∆(n, ℓ, 0, z) ≥ 1

2e
min

(
2−1 ℓ1α1

32n1
, 2−2 ℓ2α2

32n2
, . . . , 2−(k−1) ℓk−1αk−1

32nk−1
, 2−k 1

4
1z≤ℓ2k/(16nk ln 2)

)
.

Only the first and last terms here are significant, because for i = 2, . . . , k,

ℓiαi

ni
=

⌊
ℓi−1

2⌈8z/αi−1⌉

⌋
· αi ·

1

2
⌊
32 zni−1

ℓi−1

⌋ ≥ ⌊ℓi−1αi−1

32z

⌋
· αi ·

1

4 · 32 zni−1

ℓi−1

105

≥ ℓi−1αi−1

64z
αi

ℓi−1

128zni−1
≥ ℓi−1αi

213z2
ℓi−1αi−1

ni−1
≥ ℓi−1

216z2k
· k
k
· ℓi−1αi−1

ni−1

≥ 2
ℓi−1αi−1

ni−1
,

where in the last step, we used the facts that k ≥ 2 and ℓi−1 ≥ ℓk−1 ≥ 216z2k2. Thus, since

α1 = 1/16,

∆(n, ℓ, 0, z) ≥ 1

2e
min

(
ℓα1

32n
,

1

4 · 2k
1z≤ℓ2k/(16nk ln 2)

)
≥ min

(
ℓ

212n
,

1

2k+5
1z≤ℓ2k/(16nk ln 2

)
.

We have almost proven Eq. 3.40. It remains to relax the condition z ≤ ℓ2k/(16nk ln 2) to z ≤ L
for some L ≤ ℓ2k/(16nk ln 2). As a consequence of the definitions, we have:

ℓi ≥
⌊
ℓi−1

256kz

⌋
=


⌊

ℓi−2

256kz

⌋
256kz

 = . . . =

⌊
ℓ

(256kz)i−1

⌋
and ni ≤ 256

zni−1

ℓi−1
.

If the condition does not hold, then:

z >
ℓ2k

16 ln 2

1

nk
≥
ℓ2k
16

∏k−1
k=1 ℓk

(28z)k−1n

≥ ℓk+1

16 · (28zk)2(k−1)+(k−2)+(k−3)+...+1+0(28z)k−1n

=
ℓk+1

16 · (28zk)(k2+k−2)/2(28z)k−1n
.

Rearranging to put all the z terms on the left gives:

28z · (28z)
k2+3k−4

2 ≥ 28
ℓk+1

16k
k2+k−2

2 n
,

which implies

z >
1

28

(
28ℓk+1

16n

) 2
k2+3k−2 1

k
k2+k−2

k2+3k−2

≥ 1

28k

(
ℓk+1

n

) 2
k2+3k−2

=: L .

In the last inequality, we used the fact that k2+k−2
k2+3k−2

≤ 1 for k ≥ 1.

Now, say a random tape algorithm has error probability ≤ 1
213

ℓ
n against any adaptive adversary,

and uses z bits of space. If ℓ ≥ n8/9, it is easy to show that the optimal value of k with which to

apply Lemma 3.11.5 is 1. Assume ℓ < n8/9. Then for all k, we have two cases. If z ≤ 1
256k ℓ

1/k,

then we can apply Lemma 3.11.5. By Lemma 3.1.2, z ≥ log(ℓ+ 1) ≥ 1, which implies (256k)k ≤ ℓ

106

and thus that k ≤
⌊
1
8 log ℓ

⌋
. For all ℓ < n8/9, the algorithm has error:

≤ ℓ

213n
< min(

ℓ

212n
,

1

25ℓ1/8
) ≤ min(

ℓ

212n
,

1

2k+5
) ,

so by Lemma 3.11.5, the algorithm space must satisfy:

z ≥ 1

256k

(
ℓk+1

n

) 2
k2+3k−2

.

Since we either have this lower bound on z, or z ≥ 1
256k ℓ

1/k, it follows that for any integer k ≥ 1,

z ≥ min

(
1

256k
ℓ1/k,

1

256k

(
ℓk+1

n

) 2
k2+3k−2

)
.

We can take the maximum over all values of k to obtain:

z ≥ max
k∈{1,...,ℓ}

1

256k
min

(
ℓ1/k,

(
ℓk+1

n

) 2
k2+3k−2

)
.

The right hand side can be simplified with the following lemma:

Lemma 3.11.6.

max
k∈N

1

k
min

(
ℓ1/k,

(
ℓk+1

n

) 2
k2+3k−2

)
≥ 1

k
max
k∈N

(
ℓk+1

n

) 2
k2+3k−2

≥ log ℓ

2 log n
ℓ
15
32

log ℓ
logn . (3.41)

Proof of Lemma 3.11.6. The left branch of the min(·, ·) terms in Eq. 3.41 is actually unnecessary.

For any integer λ ≥ 2, say that

1

λ

(
ℓλ+1

n

) 2
λ2+3λ−2

= max
k∈N

1

k

(
ℓk+1

n

) 2
k2+3k−2

.

Then in particular,

1

λ

(
ℓλ+1

n

) 2
λ2+3λ−2

≥ 1

λ− 1

(
ℓ(λ−1)+1

n

) 2
(λ−1)2+3(λ−1)−2

≥ 1

λ

(
ℓλ

n

) 2
λ2+λ−4

,

which implies

n2λ+2 = n(λ
2+3λ−2)−(λ2+λ−4) ≥ ℓλ·(λ2+3λ−2)−(λ+1)·(λ2+λ−4) = ℓλ

2+λ+4 ,

hence we have ℓ ≤ n
2λ+2

λ2+λ+4 .

107

On the other hand, we have

1

λ
ℓ1/λ ≥ 1

λ

(
ℓλ+1

n

) 2
λ2+3λ−2

⇐⇒ nλ ≤ ℓ(λ+1)λ−λ2+3λ−2
2 = ℓ

λ2−λ+2
2 ,

so the left branch of the min(·, ·) in Eq. 3.41 is only smaller when ℓ ≥ n
2λ

λ2−λ+2 . As

2λ+ 2

λ2 + λ+ 4
≤ 2λ

λ2 − λ+ 2
,

for all λ ≥ 1, it follows that the left branch of the min(·, ·) in Eq. 3.41 is only smaller than the

right when the entire term is not the maximum. Thus the left hand side of Eq. (3.41) is:

≥ max
k∈N

1

k

(
ℓk+1

n

) 2
k2+3k−2

. (3.42)

To get a looser but more easily comprehensible lower bound, we first observe that we can pull

the 1/k factor out of the max, with only minor losses, because:

max
k∈N

1

k

(
ℓk+1

n

) 2
k2+3k−2

≥ 1

k⋆

(
ℓk⋆+1

n

) 2

k2⋆+3k⋆−2

where k⋆ = argmax
k∈N

(
ℓk+1

n

) 2
k2+3k−2

.

(3.43)

Next, we note that maxk∈N log
(
ℓk+1

n

) 2
k2+3k−2 is piecewise linear and convex in log ℓ. Consequently,

we can lower bound it using the convex function C (log ℓ)2

logn , where C is the maximum value which

satisfies the inequality at all “corner points” of maxk∈N log
(
ℓk+1

n

) 2
k2+3k−2 . These corner points

occur precisely at values of log ℓ where, for some k ≥ 2, we have:

(
ℓk+1

n

) 2
k2+3k−2

=

(
ℓ(k−1)+1

n

) 2
(k−1)2+3(k−1)−2

.

Rearranging this gives:

log n

log ℓ
=

(k + 1)((k − 1)2 + 3(k − 1)− 2)− (k − 1 + 1)(k2 + 3k − 2)

((k − 1)2 + 3(k − 1)− 2)− (k2 + 3k − 2)
=
k2 + k + 4

2k + 2
.

so the corners occur at ℓ = n
2k+2

k2+k+4 ; and at such ℓ, we have

log

(
ℓk+1

n

) 2
k2+3k−2

=

(
2

k2 + 3k − 2
· ((k + 1)

2k + 2

k2 + k + 4
− 1)

)
log n =

2

k2 + k + 4
log n

=
(log ℓ)2

log n

2

k2 + k + 4

(
log n

log ℓ

)2

=
(log ℓ)2

log n

2

k2 + k + 4

(
k2 + k + 4

2k + 2

)2

108

=
1

2

(log ℓ)2

log n

k2 + k + 4

(k + 1)2
≥ 15

32

(log ℓ)2

log n
.

The function k2+k+4
(k+1)2

has derivative k−7
(k+1)3

and is minimized exactly at k = 7, where it has value

15
16 . Consequently, the value C = 15

32 is the best possible.

We still need to lower bound the 1/k⋆ term of Eq. 3.43. From the calculation of the corner

points, it follows that a given integer k only maximizes
(
ℓk+1

n

) 2
k2+3k−2 when ℓ ∈ [n

2k+4

k2+3k+6 , n
2k+2

k2+k+4].

Therefore, the optimal value k⋆ must satisfy:

log ℓ ≤ 2k⋆ + 2

k2⋆ + k⋆ + 4
log n ≤ 2

k⋆
log n ,

which implies: 1
k⋆
≥ 1

2
log ℓ
logn . With this inequality, and the value of C, we obtain:

x ≥ 1

k⋆

(
ℓk⋆+1

n

) 2

k2⋆+3k⋆−2

≥ log ℓ

2 log n
ℓ
15
32

log ℓ
logn .

Summarizing, we have the following theorem:

Theorem 3.11.7. Random tape δ-error adversarially robust algorithms for mif(n, ℓ) require

Ω

(
max
k∈N

1

k

(
ℓk+1

n

) 2
k2+3k−2

)
= Ω

(
log ℓ

log n
ℓ
15
32

logn ℓ

)

bits of space, for δ ≤ ℓ
213n

.

Remark 3.11.8. To prove a lower bound, we required δ ≤ ℓ
213n

. For large values of δ, random tape

algorithms can be much more efficient. For example, there is a (log t)-space algorithm for mif(n, ℓ)

with Θ(ℓ2/t) error probability, which on each step randomly picks a new state (and output value)

from [t].

Remark 3.11.9. The lower bound of Theorem 3.11.7 is not particularly tight, and we suspect it can

be improved to match the upper bound within polylog(ℓ, n) factors. It may be the case that actual

algorithms must fall in one of the following two cases, or in some interpolation between them:

• If a constant fraction of the next ℓ/2 outputs are contained inW , we could (essentially) reduce

to mif(w, ℓ/2).

• If on each search step of length Θ(ℓ/z), the outputs of the algorithm are concentrated in a

new set of size Θ(w/z), then we could (essentially) reduce to mif(Θ(w/z),Θ(ℓ/z)).

Remark 3.11.10. The adversary of Adversary 3.11.1 runs in doubly exponential time, and requires

knowledge of the algorithm. The former condition cannot be improved by too much: if one-way

109

functions exist, one could implement the random oracle algorithm for mif(n, ℓ) from Theorem 3.3.6

using a pseudo-random generator that fools all polynomial-time adversaries. One can also prove by

minimax theorem that universal adversaries for random tape mif(n, ℓ) algorithms can not be used

to prove any stronger lower bounds than the one for random oracle algorithms.

Remark 3.11.11. For a zero-mistake (Definition 2.2.2) algorithm with ≤ δ probability of aborting or

returning ⊥, we have 0 = ∆(n, ℓ, δ, z). For δ = O(1), one can obtain a lower bound on z matching

Theorem 3.11.7.

A different and weaker approach is, given a zero-mistake random tape algorithm A with error

≤ δ ≤ 1
3 , to construct a new algorithm B with error O(ℓn) by running Θ(

log n
ℓ

log 1/δ) parallel copies of

A and reporting outputs from any copy that has not yet aborted. Proving a space lower bound for

B then implies a slightly weaker one for A.

3.12 Conclusion

In this chapter, we proved upper and lower bounds for mif(n, ℓ) in a variety of models. Some of

these results are closely tied to the details of MissingItemFinding, but others use more general

principles.

For algorithms using mif, there appear to be two main ways in which randomness can produc-

tively be used. First, one can blindly pick a random value. A single random value will fail with

Ω(ℓ/n) probability in the static setting, and picking a random value for each output will typically

fail with Ω(min(1, ℓ2/n)) probability in the adversarial setting. White-box-robust random tape al-

gorithms, which essentially can only use this technique, can not do much better than deterministic

algorithms when the error level is O(min(1, ℓ2/n)). Second, one can pick a random subset of [n],

and maintain a bit to track whether the input ever overlaps with the region. This second technique

is the basis for the random oracle, seed, and tape algorithms in the adversarial setting.

Because algorithms for mif can generally be modified to be zero mistake (either give correct

outputs or explicitly abort), designing zero-error algorithms is not too difficult: one need only add

on a helper algorithm that is activated when the original randomized algorithm fails. For mif, this

happens to use O(ℓ2/n polylog(n)) space in expectation.

Almost all of the lower bounds in this chapter used a reduction from the two-player commu-

nication problem avoid (or an equivalent lemma, like Lemma 3.9.2). They often used a simple

iterative extraction trick: if an adversary echos back the last output of the algorithm for mif, it

can force the algorithm to produce a new output and reveal more information.

The random seed (and possibly random-tape) lower bounds in the adversarial setting may use a

more generally applicable strategy. Algorithms with these types of randomness are fundamentally

limited by the amount of randomness they can fit into their state. For the random-seed and random-

110

tape cases, we design adversaries that try to learn the past random decisions of the algorithm. For

random seed algorithms, the adversary is rather generic, and uses a win-win strategy in which it can

either learn more information or it reaches a point where on the next few inputs, the algorithm will

behave pseudo-deterministically, letting one apply pseudo-deterministic lower bounds. For random

tape algorithms, the adversary we design uses a specific feature of mif: that as a consequence of

the avoid reduction, states of the algorithm can be associated with a limited set of possible future

outputs. Using this, the adversary (by learning the earlier state, or at least a likely distribution

over earlier states) can learn a constraint on the future behavior of the algorithm.

We note that in many aspects, the random tape lower bounds and algorithms are more compli-

cated forms of the random seed lower bounds and algorithms. In general, when proving a random

tape lower bound, it may be better to try to design a random seed lower bound first. This rec-

ommendation comes from a sample size of one; perhaps one should instead try a white-box lower

bound, in order to understand what information exactly the states of the algorithm can and cannot

retain about the past.

In this chapter, we defined mif(n, ℓ) so that the input stream could contain repeated elements.

Requiring that the input stream never repeats an element does not appear to change space com-

plexity much in the regime n = ℓΘ(1) that we were most interested in, but makes the proofs a bit

more complicated.

We did not in general try to optimize the update time of the algorithms presented here. That

being said, using a construction for random permutations described in Lemma 5.7.1, one can speed

up the common task of searching a random list for a specific element.

The MissingItemFinding problem shares a few behaviors with the graph coloring task de-

scribed in the next chapter. Both are fundamentally subtractive tasks: every new input strictly

reduces the space of possible outputs. The bounds known for graph coloring for randomized algo-

rithms in the static setting, random oracle algorithms in the adversarial setting, and deterministic

algorithms all use very similar techniques to those of this chapter, and we expect that our white-box

adversarial and pseudo-deterministic lower bounds, in particular, have easy analogues.

This chapter resolves the most pressing question about MissingItemFinding(n, ℓ), proving

that the type of randomness the algorithm has access to significantly affects the space required

in the adversarial setting. Only a few gaps in space complexity bounds remain – most notably,

for random tape algorithms in the adversarial setting – but it is unlikely that further quantitative

improvements here will teach us anything major about streaming algorithms in general.

111

Chapter 4

Robust and multipass deterministic

streaming algorithms for graph

coloring

4.1 Introduction

A graph coloring is an assignment of colors from some set to the vertices of a graph, so that no

two adjacent vertices are given the same color. For a given graph G on n vertices, the minimum

number of colors is denoted χ(G). Unfortunately, even computing χ(G), let alone finding a color

assignment, is NP-hard, so we often study easier tasks, like finding a graph coloring where the

number of colors used is a function of some easily computed graph quantity, like the maximum

degree ∆ of the vertices in a graph. Because the standard greedy algorithm for graph coloring uses

≤ ∆+ 1 colors one can always obtain a “(∆ + 1)-coloring”.1

It is natural to consider the problem of graph coloring in the streaming setting. In one of the

more general graph streaming models, as input one is given a graph edge insertion stream (for

short: graph stream) consisting of a sequence of pairs of distinct integers in [n]. This sequence is

interpreted as giving the edges of a graph on the vertex set [n]. One may forbid duplicate edges

to ensure the graph is not a multigraph. A common space target for algorithms in the graph

streaming setting is to use “semi-streaming” space—that is, Õ(n) bits of space, where Õ(·) hides

polylog(n) factors—and have failure probability ≤ 1/ poly(n). In the last few years, [ACK19] found

a streaming algorithm which performs a (∆ + 1)-coloring of an input stream encoding a graph of

maximum degree ∆, using semi-streaming space. That result gives a randomized algorithm for the

1While a ∆ + 1-coloring is optimal for graphs containing cliques of size ∆ + 1, one can for example efficiently
find ∆-colorings of ∆-colorable graphs; and even down a bit further; in particular, if ∆ is constant, [MR14] identifies
a threshold close to ∆ −

√
∆ where one can c-color c-colorable graphs in polynomial time if c is larger than the

threshold, but c-coloring c-colorable graphs is NP-hard below the threshold.

112

static setting (see Section 2.2.2). In this chapter, we try to determine what the tradeoff between

space and the number of colors used looks like for graph coloring algorithms in the adversarial

setting. Building on parallel work by [ACS22] that proves lower bounds for 1-pass and finds multi-

pass deterministic graph coloring algorithms, we also design a multi-pass deterministic algorithm

which obtains a (∆ + 1)-coloring in semi-streaming space.

4.1.1 Results

Our results in the adversarial setting and for multi-pass deterministic streaming algorithms are

briefly compared with related work in Tables 4.1 and 4.2. In all cases we consider graph edge

insertion streams. See Section 2.2 for the definitions of the models. We will give a more detailed

discussion of the techniques behind these results at the start of each of the corresponding sections.

Model Colors Space Reference

Static, random seed ∆ + 1 Õ(n) [ACK19]

Static, random seed ∆ when possible Õ(n) [AKM22]

Static, random seed κ(1 + o(1)) Õ(n) [BCG20]
Static, random oracle κ+ x Ω(nκ/x2) [BCG20]2

Static, random oracle χ Ω(n2) [ACKP19]

Static, random seed deg+1 list coloring Õ(n) [HKNT22]
Adversarial O(∆) Ω(n∆) Theorem 4.3.3
Adversarial O(∆2) Ω(n) Theorem 4.3.3

Adversarial, random seed O(∆3) Õ(n) Theorem 4.4.1

Adversarial, random oracle O(∆2.5) Õ(n) Theorem 4.5.7
Deterministic ∆ + 1 O(n∆) greedy algorithm
Deterministic ≤ n/2 Ω(n∆/(log n)2) [ACS22] (with Cor. 4.7.1)

Table 4.1: A few major results for the space usage of graph coloring on single-pass edge insertion
streams. In all cases, we assume the final value of the graph parameter is known in advance. ∆ is
the maximum degree of the graph formed by the stream, κ the maximum degeneracy of the graph
formed by the stream, and χ the optimal number of colors needed, and x an integer parameter ≥ 1.
Randomized algorithms must fail with (tracking) error probability O(1/ poly(n)). We assume ∆ is
between Ω((log n)2) and n/2.

Adversarial setting. First, we give results for graph coloring in the adversarial setting. By a

reduction to (a variant of) the avoid one-way communication task, we prove a color-space tradeoff.

By “tracking error probability” we mean the probability of error over the course of the entire stream

produced by the adversary; recall Definition 2.2.1.

2[BCG20] claims an Ω(n2/x2) lower bound for the task of “κ + x”-coloring, but this only applies when the
degeneracy κ = Ω(n). Adjusting the proof of [BCG20, Theorem 21] to, for a given κ, split a graph into chunks of
size 5(κ − 2), similarly to the way we split the vertex set for Theorem 4.3.3, yields a more usable lower bound of
Ω(nκ/x2). The argument will use the easily proven communication lower bound for the direct-sum form of the Index
communication problem.

113

Colors Passes Space Reference

O(poly(∆)) need ≥ 2 Õ(n) [ACS22]

O(∆) O(log∆) Õ(n) [ACS22]
∆ + 1 1 O(n∆) greedy algorithm

∆+ 1 O(log∆ log log∆) Õ(n) Theorem 4.6.11

deg+1 O(log∆ log log∆) Õ(n) Theorem 4.6.15

Table 4.2: Space vs. passes vs. colors for deterministic multi-pass streams.

Theorem 4.3.3. Let L, n,K be integers satisfying 12 ln(4n) ≤ L < K ≤ n
2 .

Any adversarially robust coloring algorithm A for graph edge insertion streams of n-vertex

graphs of maximum degree ≤ L, which maintains a coloring with ≤ K colors with tracking error

probability ≤ 3
4 , requires space

≥ 1

30

nL2

K
.

Corollary 4.1.1. For any real value c ≥ 1, and ∆ ∈ [Ω(log n), O(n1/c)], a robust O(∆c)-coloring

algorithm on graph edge insertion streams which succeeds ≥ 1/4 of the time requires Ω(n∆2−c)

space. In particular, O(∆)-coloring requires Ω(n∆) space, O(∆2) coloring requires Ω(n) space, and

O(∆3) coloring requires Ω(n/∆) space.

This rules out the possibility of finding a (∆ + 1)-coloring algorithm in the adversarial setting

that works for all ∆ and uses semi-streaming space. (We note that concurrent and independent

work by [ACS22] finds an equivalent result.)

Because deterministic algorithms are also adversarially robust, Theorem 4.3.3 alone gives a

tight Ω(n∆) lower bound for the space usage of deterministic (∆ + 1)-coloring algorithms. For

comparison, a slight modification of [ACS22]’s proof gives a much stronger result:

Corollary 4.7.1. [Modification of [ACS22], Theorem 1] For any integer L ≥ 8 log n ln(2n), a

deterministic algorithm which maintains an n/2-coloring (or better) of a graph edge insertion stream

of maximum degree ≤ L requires space:

≥ nL

16 ln 2(log n)2
. (4.16)

We also present two robust algorithms for graph coloring which use semi-streaming space.

Theorem 4.4.1. Algorithm 4.4.1 is an adversarially robust O(∆3) coloring algorithm, which uses

Õ(n) bits of space (including random bits used by the algorithm) and succeeds with high probability.

Corollary 4.4.5. By adjusting parameters of Algorithm 4.4.1, we obtain for any β ∈ [0, 1] a robust,

random-seed algorithm for O(∆3−2β)-coloring using Õ(n∆β) space.

114

Theorem 4.5.7. There is an O(∆5/2)-coloring algorithm which is robust (with total error proba-

bility ≤ δ) against adaptive adversaries, and runs in O(n polylog n · log 1
δ) bits of space, given oracle

access to O(n∆) bits of randomness.

Corollary 4.5.8. By adjusting parameters of Algorithm 4.5.1, we obtain for any β ∈ [0, 1] a

robust O(∆(5−3β)/2)-coloring algorithm using Õ(n∆β) space, assuming oracle access to O(n∆) bits

of randomness.

A weakness of Algorithm 4.5.1 is that it requires the algorithm be able to access all Õ(n∆)

random bits in advance. If we assume that the adversary is limited in some fashion, then it may

be possible to store ≤ Õ(n) true random bits, and use a pseudorandom number generator to

produce the Õ(n∆) bits that the algorithm uses, on demand. For example, if the adversary only

can use O(n/ log n) bits of space, using Nisan’s PRG [Nis90] on Ω(n) true random bits will fool the

adversary. Alternatively, assuming one-way functions exist, there is a classic construction [HILL99]

to produce a pseudorandom number generator using O(n) true random bits, which in polynomial

time generates poly(n) pseudorandom bits that any adversary limited to using polynomial time

cannot distinguish with non-negligible probability from truly random bits.

Together, the classic streaming algorithm of [ACK19], our results on adversarially robust graph

coloring, and the deterministic lower bound of [ACS22] establish a three-way separation between

the number of colors achievable by algorithms using semi-streaming space. In particular, in the

static setting (∆ + 1)-coloring is possible in semi-streaming space; in the adversarial setting one

must use between Ω̃(∆2) and Õ(∆3) colors (with a tighter Õ(∆2.5) bound if one has a random

oracle), and deterministic algorithms using semi-streaming space cannot achieve a coloring using

O(∆c)-colors at all, for any c ≥ 1, if ∆ ∈ [Ω(polylog(n)), O(n1/c)].

If we instead consider the space needed to achieve ∆ + 1 coloring, we have proven that Ω(n∆)

space is needed in the adversarial setting for ∆ = Ω(log n), while by [ACK19], Õ(n) space works

in the static setting. This separation is quadratic when ∆ = n/4, say. This resolves a recent open

question:3 whether there exists a strong separation between algorithms in the static and adversarial

settings for natural problems. [KMNS21] gave such a separation, exhibiting a function estimation

problem for which the ratio between the adversarial and standard streaming complexities was as

large as Ω̃
(√

λε,m
)
, which is exponential upon setting parameters appropriately; but their function

was highly artificial.

3This open question was explicitly raised in the STOC 2021 workshop Robust Streaming, Sketching, and Sam-
pling [Ste21]. [KMNS21, Question 6.1] also asks whether there are “natural” streaming problems with strong separa-
tions between space complexities in adversarial and static settings; graph coloring, while arguably “natural”, has the
caveat that its outputs, like those of MissingItemFinding, are combinatorial, not numerical. We suspect that the
task of estimating the number of distinct elements for a turnstile stream, which is “symmetric” and has a numerical
output, has a static-vs-adversarial separation; but finding a lower bound here is still an open problem – the most
recent robust algorithm is [BEEO22] and uses Õ(m1/3) space, where m is the stream length, and no separation from
the static setting is known.

115

Multi-pass deterministic streaming. Here we find a multi-pass algorithm for (∆+1)-coloring

that runs in semi-streaming space and a small number of rounds.

Theorem 4.6.11. There is an efficient deterministic semi-streaming algorithm to (∆ + 1)-color

an n-vertex graph, given a stream of its edges. The algorithm uses O(n(log n)2) bits of space and

runs in O(log∆ log log∆) passes.

The above result shows that we can improve the O(∆)-coloring result of [ACS22] to the combi-

natorially optimal (∆+1)-coloring by paying only an additional O(log log∆) factor in the number

of passes. It is worth pointing out here that in the streaming model, as well as several other cases,

it is known that O(∆)-coloring is an “algorithmically much easier” problem than (∆+1)-coloring.

For instance, there are quite simple single-pass randomized algorithms known for O(∆)-coloring

[BG18, ACK19], whereas the only known streaming (∆ + 1)-coloring algorithm, due to [ACK19],

uses sophisticated tools and a combinatorially involved analysis.4

Our algorithm in Theorem 4.6.11 is inspired by [ACS22]’s deterministic O(∆)-coloring algo-

rithm, and by the distributed algorithm of [GK21] that solves (∆ + 1)-coloring in the CONGEST

model. (That algorithm was in turn inspired by earlier algorithms of [BKM20] and [Kuh20].)

The key limitation of the streaming model is that there is not enough space for a typical vertex

to “know” what exactly its neighborhood is; on the other hand, distributed computing models

(including CONGEST) often have difficulty coordinating distant vertices. Fortunately, the color

selection procedure used by [GK21] and preceding work does not fundamentally require precise

knowledge of a vertex’s neighborhood, and so requires little adaptation to work in the streaming

setting.

As a by-product of the technology developed for establishing Theorem 4.6.11, we also obtain

a similarly efficient algorithm for the more general problem of (degree + 1)-list-coloring. In this

problem, the input specifies a graph G as usual and, for each vertex x, a list Lx of at least deg(x)+1

allowed colors for x; the goal is to properly color G subject to these lists. In a streaming setting,

the input is a sequence of tokens, each either an edge of G or a pair (x, color) for some vertex x;

these tokens may be interleaved arbitrarily. We obtain the following algorithmic result.

Theorem 4.6.15. Let C be a set of colors. There is a deterministic semi-streaming algorithm for

(degree+ 1)-list-coloring a graph G given a stream consisting of, in any order, the edges of G, and

(x, c) pairs specifying that the color c ∈ C is allowed for the vertex x. We assume no (vertex,color)

pair is repeated, and that the list Lx of colors that vertex x receives has length deg(x) + 1. The

algorithm uses O(n(log n)2(log |C|)2) bits of space and runs in O(log∆ log log∆) passes.

4Similar examples of this difference appear in the (randomized) LOCAL algorithms [SW10, CLP18], (deterministic)
dynamic graph algorithms [BCHN18], or even provable separations for the “palette sparsification” technique [ACK19,
AA20]. Yet another example is the closely related problem of O(degeneracy)-coloring versus (degeneracy+1)-coloring
studied by [BCG20] who proved that the former admits a (randomized) single-pass semi-streaming algorithm while
the latter does not.

116

Applying Theorem 4.6.11 also gives a communication protocol for two-player graph coloring,

using a small number of rounds. While it is not hard to obtain an O(n ·polylog (n)) communication

protocol for (∆+1) coloring by simulating the greedy algorithm (and running binary search between

Alice and Bob to find an available color for each vertex), the interesting part of Corollary 4.1.2

is that we can achieve a similar communication guarantee in a much smaller number of rounds of

communication.

Corollary 4.1.2. There is a deterministic communication protocol for finding a (∆+1)-coloring of

any graph of maximum degree ∆ whose edges are partitioned between two players, using O(n(log n)4)

bits of communication and O(log∆ log log∆) rounds.

Proof of Corollary 4.1.2. This follows by a standard conversion of a streaming algorithm to a com-

munication protocol.5

4.1.2 Related work

In this section, we describe related work on the topic of graph coloring and graph streaming ; related

work for adversarially robust streaming specifically is described in Section 2.2.3 and as needed in

this chapter.

Graph streaming and robustness. Graph streaming has become a widely popular topic to

research [McG14], especially since the advent of large and evolving networks including social media,

web graphs, and transaction networks. As these large graphs are regularly mined for knowledge, and

can be affected by real world news and events, such knowledge often informs their future evolution.

It is thus important to consider streaming algorithms for graph problems in the adversarial setting.

For practical examples where robust algorithms for graph streaming might be needed, consider a

user continuously interacting with a database and choosing future queries based on past answers

received; or think of an online streaming or marketing service looking at a customer’s transaction

history and recommending them products based on it.

However, past work on such adversarially robust streaming algorithms has focused on statis-

tical estimation problems and on sampling problems. With the exception of [BHM+21], there

has not been much study of graph theoretic problems. In many cases this is not necessary: for

problems calling for Boolean answers, such as testing connectivity or bipartiteness, achieving low

error in the static setting automatically implies doing so against an adaptive adversary as well,

5Specifically: let Alice and Bob be the two players, who receive disjoint sets of edges A and B, respectively. They
will run Algorithm 4.6.1 on the stream whose first half contains the edges of A, and whose second half contains the
edges of B. To do this, Alice initializes the streaming algorithm, and runs it on the first half of the stream. She then
sends a message encoding the state of the algorithm to Bob, who decodes the message and runs the algorithm on the
second half of the stream. Bob then sends the updated state of the streaming algorithm back to Alice. This process
is repeated once for each pass of the streaming algorithm; since the algorithm uses O(n(logn)2) bits of space, uses
O(log∆ log log∆) = O((logn)2) passes, the total number of bits sent by this protocol is O(n(logn)4).

117

since a sequence of correct outputs from the algorithm gives away no information to the adversary.

For insertion-only graph streams, a number of well-studied problems such as triangle counting,

maximum matching size, and maximum subgraph density can be handled by the sketch-switching

framework of [BJWY20], because the underlying functions are monotone, and their value does not

change often. Thanks to efficient adversarially robust sampling [BY20, BHM+21], many sampling-

based graph algorithms should yield corresponding robust solutions without much overhead.

On the other hand, some problems are easily proven hard in the adversarial setting. Consider

the problem of finding a spanning forest in a graph undergoing edge insertions and deletions. The

celebrated Ahn–Guha–McGregor sketch [AGM12] solves this in Õ(n) space, but this sketch is not

adversarially robust. In fact, any adversarially robust algorithm A in a dynamic graph stream which

can be used to identify a single edge in the graph, must use Ω(n2) space. Suppose we have such an

algorithm A: then we can argue that the memory state of A upon processing an unknown graph G

must contain enough information to recover G entirely: an adversary can repeatedly ask A for an

edge, delete it, and recurse until the evolving graph becomes empty. Thus, for basic information

theoretic reasons, A must use Ω(n2) bits of space. For the task of finding a spanning forest,

this argument implies a quadratic gap between robust and standard streaming space complexities.

Arguably, this separation is not very satisfactory, since the hardness arises from the turnstile nature

of the stream, allowing the adversary to delete edges.

Graph coloring. Graph coloring is, of course, a heavily-studied problem in theoretical computer

science. For this discussion, we stick to streaming algorithms for this problem, which already has a

significant literature [BG18, ACKP19, ACK19, BCG20, AA20, BBMU21]. We only consider graph

vertex coloring; graph edge coloring has very different behavior and will be discussed in Chapter 5.

The study of graph coloring in the classical streaming model was initiated parallelly and inde-

pendently by Bera and Ghosh [BG18] and Assadi, Chen, and Khanna [ACK19]. The former work

obtained an O(∆)-coloring algorithm in semi-streaming space, while the latter achieved a tight

(∆ + 1)-coloring in the same amount of space. The latter work uses an framework called palette

sparsification: each node samples a list of roughly log n colors from the palette of size ∆ + 1, and

it is shown that w.h.p. there exists a proper list-coloring where each node uses a color only from

its list. This immediately gives a semi-streaming (∆ + 1)-coloring algorithm since one can store

only “conflicting” edges that can be shown to be only Õ(n) many w.h.p.6 This framework implying

semi-streaming coloring algorithms was then explored by Alon and Assadi [AA20] under various

palette sizes (based on multiple color parameters) as well as list sizes. Their results also implied

interesting algorithms for coloring triangle-free graphs and for (degree+1)-list coloring.

6The algorithm that is immediately implied is an exponential-time one where one can store the conflicting edges
and obtain the list-coloring by brute force. An elaborate method was then needed to implement it in polynomial
time.

118

Very recently, Assadi, Chen, and Sun [ACS22] studied deterministic ∆-based coloring and

showed that for a single pass, no non-trivial streaming algorithm can be obtained. For semi-

streaming space, any deterministic algorithm needs exp(∆Ω(1))) colors, whereas for O(n1+α) space,

∆Ω(1/α) colors are needed. Observe that these bounds are essentially matched by the trivial algo-

rithm that stores the graph when ∆ ≤ nα in order to (∆ + 1)-color it at the end; or just color the

graph trivially with n = ∆1/α colors, without even reading the edges, when ∆ > nα. In light of

this, a natural approach is to consider the problem allowing multiple passes over the input stream.

They show that in just one additional pass, an O(∆2)-coloring can be obtained deterministically,

while with O(log∆) passes, we can have a deterministic O(∆)-coloring algorithm. Another very

recent work on ∆-based coloring is that of Assadi, Kumar, and Mittal [AKM22], who surprisingly

proved Brooks’s theorem in the semi-streaming setting: any (connected) graph that is not a clique

or an odd cycle can be colored using exactly ∆ colors in semi-streaming space.

Other works on streaming coloring include the work of Abboud, Censor-Hillel, Khoury, and

Paz [ACKP19] who show that coloring an n-vertex graph with the optimal chromatic number of

colors requires Ω(n2/p) space in p passes. They also show that deciding c-colorability for 3 ≤ c < n

(that might be a function of n) needs Ω((n − c)2/p) space in p passes. Another notable work is

that of Bera, Chakrabarti, and Ghosh [BCG20], who considered the problem with respect to the

degeneracy parameter that often yields more efficient colorings, especially for sparse graphs. They

designed a semi-streaming κ(1 + o(1))-coloring algorithm for graphs of degeneracy κ. They also

proved that a combinatorially tight (κ+1)-coloring is not algorithmically possible in sublinear space.

In particular, semi-streaming coloring needs κ+Ω(
√
κ) colors. Bhattacharya, Bishnu, Mishra, and

Upasana [BBMU21] showed that verifying whether an input vertex-coloring of a graph is proper

is hard in the vertex-arrival streaming model where each vertex arrives with its color and incident

edges. Hence, they consider a relaxed version of the problem that asks for a (1 ± ε)-estimate of

the number of conflicting edges. They prove tight bounds for this problem on adversarial-order

streams and further study it on random-order streams. Recently, Halldorsson, Kuhn, Nolin, and

Tonayan [HKNT22] gave a palette-sparsification-based semi-streaming algorithm for (degree + 1)-

list-coloring for any arbitrary list of colors assigned to the nodes, improving upon the work of

[AA20] whose algorithm works only when the color-list of each vertex v is {1, . . . ,deg(v)+1}. Note
that all the works mentioned above are in the “static” streaming model and all their algorithms,

except those in [ACS22], are randomized and non-robust.

4.2 Preliminaries

Notation. A graph G = (V,E) typically has n = |V | vertices. We may identify G with its set of

edges, and write {u, v} ∈ G to mean that {u, v} is an edge in G. For B ⊆ E, degB(x) denotes the

119

degree of x in the graph formed by the edges in B. For X ⊆ V , G[X] denotes the subgraph of G

induced by X.

Colorings. A partial coloring of a graph G = (V,E) using a palette C (any nonempty finite set)

is a tuple (U, χ) where U ⊆ V is the set of uncolored vertices and χ : V → C ∪ {⊥} is a function

such that χ(x) = ⊥ ⇔ x ∈ U . (We may also simply refer to χ as the partial coloring.) The coloring

is said to be proper if, for all {u, v} ∈ E such that u /∈ U and v /∈ U , we have χ(u) ̸= χ(v). A

coloring of G is a partial coloring where U = ∅.

Coloring edge insertion streams. A graph edge insertion stream is a sequence of edges7

e1, . . . , em between pairs of vertices from some fixed set, like [n]. For any i ∈ [m], the first i edges

of the graph stream encode an intermediate graph Gi on vertex set [n] with edge set {e1, . . . , ei}.
There are other models of graph streams (which handle deletions, or vertex changes) but in this

chapter we use “graph stream” without qualification to refer to graph edge insertion streams.

Given a graph-theoretic parameter ψ and function f , in the f(ψ)-coloring (algorithmic) problem

one is given a value L and a graph edge insertion stream where the final graph G containing all

stream edges satisfies ψ(G) ≤ L, and wants to maintain a coloring of the vertices using f(L) colors

which is compatible with the current intermediate graph. This chapter will focus mainly on the case

where ψ = ∆, for ∆ the maximum degree of the graph formed by the input stream; we will often try

to maintain an O(∆c)-coloring for some c. (Note: we do not address the problem of maintaining

a coloring using a number of colors that varies with time, depending on the current maximum

degree of the intermediate graph encoded by the stream. In exchange for using a constant factor

more colors, one can easily do this by running O(log n) parallel instances of fixed color streaming

algorithms which handle graphs of maximum degrees 1, 2, 4, 8, . . ., and switching between them as

necessary. Since in the adversarial setting our results give space/color tradeoffs, one can always

trade back the constant factor color increase for a corresponding increase in space usage.)

For deterministic multi-pass streaming algorithms for edge insertion streams, we also consider,

the list coloring problem, wherein each x ∈ V has an associated list (really a set) Lx ⊆ C and

we are to find a coloring satisfying χ(x) ∈ Lx for all x. Specifically, we study the problem of

(deg+1)-list-coloring, in which |Lx| = deg(x) + 1 for each x.

The output of an algorithm for graph coloring with K colors is a vector in [K]n, specifying the

color for each vertex. While naively encoding this output uses Θ(n logK) bits of space, we note

that it is sometimes possible to do better. For example, when K = n, there exists a graph coloring

which works for all possible graphs, which just assigns to vertex i ∈ [n] the color i; an algorithm

that just produces this output will require 0 bits of information about the graph.

7We assume edges must be distinct, although the graph coloring algorithms we present also can be made to work
with multigraphs, if one interprets the “maximum degree” of the graph to count the multiplicity of edges.

120

4.3 Hardness of adversarially robust graph coloring

As might be expected, our lower bounds are best formalized through communication complexity.

Recall that a typical communication-to-streaming reduction for proving a one-pass streaming space

lower bound works as follows. We set up a communication game for Alice and Bob to solve, using

one message from Alice to Bob. Suppose that Alice and Bob have inputs x and y in this game.

The players simulate a purported efficient streaming algorithm A (for P , the problem of interest)

by having Alice feed some tokens into A based on x, communicating the resulting memory state

of A to Bob, having Bob continue feeding tokens into A based on y, and finally querying A for an

answer to P , based on which Bob can give a good output in the communication game. When this

works, it follows that the space used by A must be at least the one-way randomized communication

complexity of the game. Note, however, that this style of argument where it is possible to solve

the game by querying the algorithm only once, is also applicable to the static setting. Therefore,

it cannot prove a lower bound any higher than the standard streaming complexity of P .

The way to obtain stronger lower bounds by using the purported adversarial robustness of A is

to design communication protocols where Bob, after receiving Alice’s message, proceeds to query A
repeatedly, feeding tokens into A based on answers to such queries. In fact, in the communication

games we shall use for our reductions, Bob will not have any input at all and the goal of the game

will be for Bob to recover information about Alice’s input, perhaps indirectly. For our main lower

bound (Theorem 4.3.3), we use a communication game that is also at the core of some of the lower

bounds for MissingItemFinding (see Chapter 3).

The Subset-Avoidance Problem. Recall the subset-avoidance problem introduced in Sec-

tion 3.3.1 and denote it avoid(t, a, b). To restate Definition 3.3.1, avoid(t, a, b) denotes the follow-

ing one-way Alice-to-Bob communication game.

• Alice is given S ⊆ [t] with |S| = a;

• Bob must produce T ⊆ [t] with |T | = b for which T is disjoint from S.

The one-way communication complexity of this game can be lower bounded from first principles.

Since each output of Bob is compatible with only
(
t−b
a

)
possible input sets of Alice, she cannot

send the same message on more than that many inputs. Therefore, she must be able to send

roughly
(
t
a

)
/
(
t−b
a

)
distinct messages for a protocol to succeed with high probability. The number

of bits she must communicate in the worst case is roughly the logarithm of this ratio, which we

show is Ω(ab/t). This lower bound is tight and (up to an additive O(log n) term) is matched by a

deterministic protocol, as shown in Lemma 3.3.4.

In this section, we shall need to consider a direct sum version of this problem that we call

avoidk(t, a, b), where Alice has a list of k subsets and Bob must produce his own list of subsets,

121

with his ith avoiding the ith subset of Alice. We extend our lower bound argument to show that

the one-way complexity of avoidk(t, a, b) is Ω(kab/t).

Using Graph Coloring to Solve Subset-Avoidance. To explain how we reduce the avoidk

problem to graph coloring, we focus on a special case of Theorem 4.3.3 first. Suppose we have an

adversarially robust (∆ + 1)-coloring streaming algorithm A. We describe a protocol for solving

avoid(t, a, b). Let us set t =
(
n
2

)
to have the universe correspond to all possible edges of an n-vertex

graph. Suppose Alice’s set A has size a = n2/8. We show that, given a set of n vertices, Alice

can use public randomness to randomly map her elements to the set of vertex-pairs so that the

corresponding edges induce a graph G that, w.h.p., has max-degree ∆ ≈ n/4. Alice proceeds to

feed the edges of G into A and then sends Bob the state of A.
Bob now queries A to obtain a (∆+1)-coloring of G. Then, he pairs up like-colored vertices to

obtain a maximal pairing. Observe that he can pair up all but at most one vertex from each color

class. Thus, he obtains at least (n −∆ − 1)/2 such pairs. Since each pair is monochromatic, the

two vertices don’t share an edge, and hence, Bob has retrieved (n −∆ − 1)/2 missing edges that

correspond to elements absent in Alice’s set. Since Alice used public randomness for the mapping,

Bob knows exactly which elements these are. He now forms a matching with these pairs and inserts

the edges to A. Once again, he queries A to find a coloring of the modified graph. Observe that

the matching can increase the max-degree of the original graph by at most 1. Therefore, this new

coloring uses at most ∆ + 2 colors. Thus, Bob would retrieve at least (n −∆ − 2)/2 new missing

edges. He again adds to the graph the matching formed by those edges and queries A. It is crucial
to note here that he can repeatedly do this and expect A to output a correct coloring because of

its adversarial robustness. Bob stops once the max-degree reaches n− 1, since now the algorithm

can color each vertex with a distinct color, preventing him from finding a missing edge.

Summing up the sizes of all the matchings added by Bob, we see that he has found Θ((n−∆)2)

elements missing from Alice’s set. Since ∆ ≈ n/4, this is Θ(n2). Thus, Alice and Bob have

solved the avoid(t, a, b) problem where t =
(
n
2

)
and a, b = Θ(n2). As outlined above, this requires

Ω(ab/t) = Ω(n2) communication. Hence, A must use at least Ω(n2) = Ω(n∆) space.

With some further work, we can generalize the above argument to work for any value of ∆ with

1 ≤ ∆ ≤ n/2. For this generalization, we use the communication complexity of avoidk(t, a, b) for

suitable parameter settings. With more rigorous analysis, we can further generalize the result to

apply not only to (∆+1)-coloring algorithms but to any f(∆)-coloring algorithm. That is, we can

prove Theorem 4.3.3.

4.3.1 The k-fold subset avoidance problem

Let avoidk(t, a, b) be the problem of simultaneously solving k instances of avoid(t, a, b).

122

Lemma 4.3.1. The public-coin δ-error communication complexity of avoidk(t, a, b) is bounded

thus:

R→
δ (avoidk(t, a, b)) ≥ log (1− δ) + k log

((
t

a

)/(t− b
a

))
(4.1)

≥ log (1− δ) + kab/(t ln 2) . (4.2)

Proof of Lemma 4.3.1. The proof of this lemma is almost the same as the lower bound proof for

avoid(t, a, b) from Lemma 3.3.2. As before, let Π be a δ-error one-way communication protocol for

avoidk(t, a, b) and let d = cost(Π). Since, for each input (S1, . . . , Sk) ∈
(
[t]
a

)k
, the error probability

of Π on that input is at most δ, there must exist a fixing of the randomness of Π so that the

resulting deterministic protocol Π′ is correct on all inputs in a set

C ⊆
(
[t]

a

)k

, with |C| ≥ (1− δ)
(
t

a

)k

.

The protocol Π′ is equivalent to a function ϕ : C →
([t]
b

)k
where

• the range size | image(ϕ)| ≤ 2d, because cost(Π) ≤ d, and

• for each (S1, . . . , Sk) ∈ C, the tuple (T1, . . . , Tk) := ϕ((S1, . . . , Sk)) is a correct output for

Bob, i.e., Si ∩ Ti = ∅ for each i.

For any fixed (T1, . . . , Tk) ∈
([t]
b

)k
, the set of all (S1, . . . , Sk) ∈

(
[t]
a

)k
for which each coordinate

Si is disjoint from the corresponding Ti is precisely the set
(
[t]\T1

a

)
×· · ·×

(
[t]\Tk

a

)
. The cardinality of

this set is exactly
(
t−b
a

)k
. Thus, for any subset D of

([t]
b

)k
, it holds that

∣∣C ∩ ϕ−1(D)
∣∣ ≤ (t−b

a

)k|D|.
Consequently,

(1− δ)
(
t

a

)k

≤ |C| = |ϕ−1(image(ϕ))| ≤
(
t− b
a

)k

| image(ϕ)| ≤
(
t− b
a

)k

2d ,

which, on solving to lower bound d, gives Eq. 4.1.

The weakened lower bound Eq. 4.2 follows immediately from Eq. 3.6 in the proof of

Lemma 3.3.2.

4.3.2 Reducing k-AVOID to graph coloring

Having introduced and analyzed the k-avoid communication game, we are almost ready to prove

our main lower bound result, on the hardness of adversarially robust graph coloring. We first

establish the following basic lemma on the maximum degree of a random graph.

123

Lemma 4.3.2. Let G be a graph with M edges and n vertices, drawn uniformly at random. Define

∆G to be its maximum degree. Then for 0 ≤ ε ≤ 1:

Pr

[
∆G ≥

2M

n
(1 + ε)

]
≤ 2n exp

(
−ε

2

3
· 2M
n

)
. (4.3)

Proof of Lemma 4.3.2. Let G(n,m) be the uniform distribution over graphs with m edges and

n vertices. Observe the monotonicity property that for all m ∈ N, PrG∼G(n,m)[∆G ≥ C] ≤
PrG∼G(n,m+1)[∆G ≥ C]. Next, let H(n, p) be the distribution over graphs on n vertices in which

each edge is included with probability p, independently of any others, and let e(G) be the number

of edges of a given graph G. Then with p =M/
(
n
2

)
,

Pr
G∼G(n,M)

[∆G ≥ C] = Pr
G∼H(n,p)

[∆G ≥ C | e(G) =M]

≤ Pr
G∼H(n,p)

[∆G ≥ C | e(G) ≥M] ◁ by monotonicity

≤
PrG∼H(n,p)[∆G ≥ C]
PrG∼H(n,p)[e(G) ≥M]

≤ 2 Pr
G∼H(n,p)

[∆G ≥ C] .

The last step follows from the well-known fact that the median of a binomial distribution equals

its expectation when the latter is integral; hence PrG∼H(n,p)[e(G) ≥M] ≥ 1/2.

Taking C = (2M/n)(1 + ε) and using a union bound and Chernoff’s inequality,

Pr
G∼H(n,p)

[
∆G ≥

2M

n
(1 + ε)

]
≤

∑
x∈V (G)

Pr
G∼H(n,p)

[
degG(x) ≥

2M

n
(1 + ε)

]

≤ n exp
(
−ε

2

3
· 2M
n

)
.

Theorem 4.3.3. Let L, n,K be integers satisfying 12 ln(4n) ≤ L < K ≤ n
2 .

Any adversarially robust coloring algorithm A for graph edge insertion streams of n-vertex

graphs of maximum degree ≤ L, which maintains a coloring with ≤ K colors with tracking error

probability ≤ 3
4 , requires space

≥ 1

30

nL2

K
.

Proof of Theorem 4.3.3. Given an algorithm A as specified, we can construct a public-coin proto-

col to solve the communication problem avoid⌊n/(2K)⌋(
(
2K
2

)
, ⌊LK/4⌋, ⌊L/2⌋⌈K/2⌉) using exactly

as much communication as A requires storage space. The protocol for the more basic problem

avoid(
(
2K
2

)
, ⌊LK/4⌋, ⌊L/2⌋⌈K/2⌉) is described in Protocol 4.3.1.

To use A to solve s := ⌊n/2K⌋ instances of avoid, we pick s disjoint subsets V1, . . . , Vs of the

vertex set [n], each of size 2K. A streaming coloring algorithm on the vertex set [2K] with degree

124

Protocol 4.3.1 Protocol for avoid(
(
2K
2

)
, ⌊LK/4⌋, ⌊L/2⌋⌈K/2⌉)

Require: Algorithm A that colors graphs up to maximum degree L, always using ≤ K colors
1: R ← publicly random bits to be used by A
2: π ← publicly random permutation of {1, . . . ,

(
2K
2

)
}, drawn uniformly

3: e1, . . . , e(2K2)
← an enumeration of the edges of the complete graph on 2K vertices

4: function Alice(S):
5: Z ← A::INIT(R), the initial state of A
6: for i from 1 to

(
2K
2

)
do

7: if πi ∈ S then
8: Z ← A::INSERT(Z, R, ei)
9: return Z

10: function Bob(Z):
11: J ← empty list
12: for i from 1 to ⌊L/2⌋ do
13: clr ← A::QUERY(Z, R)
14: M ← maximal pairing of like-colored vertices, according to clr
15: for each pair {u, v} ∈M do
16: Z ← A::INSERT(Z, R, {u, v}) ▷ M is turned into a matching and inserted

17: J ← J ∪M
18: if length(J) ≤ ⌊L/2⌋⌈K/2⌉ then
19: return fail
20: else
21: T ← {πi : ei ∈ first ⌊L/2⌋⌈K/2⌉ edges of J}
22: return T

limit L and using at most K colors can be implemented by relabeling the vertices in [2K] to the

vertices in some set Vi and using A. This can be done s times in parallel, as the sets (Vi)
s
i=1 are

disjoint. Note that a coloring of the entire graph on vertex set [n] using ≤ K colors is also a K-

coloring of the s subgraphs supported on V1, . . . , Vs. To minimize the number of color queries made,

Protocol 4.3.1 can be implemented by alternating between adding elements from the matching M

in each instance (for Line 16), and making single color queries to the n-vertex graph (for Line 13).

The guarantee that A uses fewer than K colors depends on the input graph stream having

maximum degree at most L. In Bob’s part of the protocol, adding a matching to the graph only

increases the maximum degree of the graph represented by Z by at most one; since he does this

⌊L/2⌋ times, in order for the maximum degree of the graph represented by Z to remain at most

L, we would like the random graph Alice inserts into the algorithm to have maximum degree

≤ L/2 ≤ L− ⌊L/2⌋. By Lemma 4.3.2, the probability that, given some i, this random graph on Vi

125

has maximum degree ∆i ≥ L/2 is

Pr

[
∆i ≥

L

4
(1 + 1)

]
≤ 4Ke−L/12 .

Taking a union bound over all s graphs, we find that

Pr

[
max
i∈[s]

∆i ≥ L/2
]
≤ 4K

⌊ n

2K

⌋
e−L/12 ≤ 2ne−L/12 .

We can ensure that this happens with probability at most 1/2 by requiring L ≥ 12 ln(4n).

If all the random graphs produced by Alice have maximum degree ≤ L/2, and the ⌊L/2⌋
colorings requested by the protocol are all correct, then we will show that Bob’s part of the protocol

recovers at least ⌊L/2⌋⌈K/2⌉ edges for each instance. Since the algorithm A’s random bits R and

permutation random bits π are independent, the probability that the maximum degree is low and

the algorithm gives correct colorings on graphs of maximum degree at most L is ≥ (1/2) · (1/4) =
1/8.

The edges that Bob inserts (Line 16) are fixed functions of the query output of A on its state

Z and random bits R. None of the edges can already have been inserted by Alice or Bob, since

each edge connects two vertices which have the same color. Because these edges only depend on

the query output of A, conditioned on this query output they are independent of Z and R. This

ensures that A’s correctness guarantee against an adversary applies here, and thus the colorings

reported on Line 13 are correct.

Assuming all queries succeed, and the initial graph that Alice added has maximum degree

≤ L/2, for each i ∈ [⌊L/2⌋], the coloring produced will have at most K colors. Let B be the set

of vertices covered by the matching M , so that [2K] \B are the unmatched vertices. Since no pair

of unmatched vertices can have the same color, |[2K] \B| ≤ K. This implies |B| ≥ K, and since

|M | = |B|/2 is an integer, we have |M | ≥ ⌈K/2⌉. Thus each for loop iteration will add at least

⌈K/2⌉ new edges to J . The final value of the list J will contain at least ⌊L/2⌋⌈K/2⌉ edges that

were not added by Alice; Line 21 converts the first ⌊L/2⌋⌈K/2⌉ of these to elements of {1, . . . ,
(
2K
2

)
}

not in the set S given to Alice.

Finally, by applying Lemma 4.3.1, we find that the communication C needed to solve s inde-

pendent copies of avoid(
(
2K
2

)
, ⌊LK/4⌋, ⌊L/2⌋⌈K/2⌉) with failure probability ≤ 7/8 satisfies

C ≥ log

(
1− 7

8

)
+
⌊ n

2K

⌋ ⌊LK/4⌋ · ⌊L/2⌋⌈K/2⌉(
2K
2

)
ln 2

.

126

Because K > L ≥ 12 ln(4n) ≥ 12 ln 4, ⌊LK/4⌋⌊L/2⌋⌈K/2⌉ ≥ (LK)2/20, so this is:

≥ n

4K

L2K2/20
1
2(2K)2 ln 2

− 3 =
nL2

40K ln 2
− 3 ≥ nL2

30K
,

where the last step follows because nL2

K ≥ 2L2 ≥ 2(12 ln 4)2, so the −3 term can be dropped in

exchange for a slight increase in the denominator.

Remark 4.3.4. The proof of Theorem 4.3.3 used the fact that an algorithm is adversarially robust

to iteratively extract ⌊L/2⌋⌈K/2⌉ edges which were not in the graph, for each group of 2K vertices.

In the static setting, the best we can do (without requiring very low error probability of the

algorithm) is extract just one set of ⌈K/2⌉ edges, for each group of 2K vertices. This would give us

an Ω(n
2K

LK/4·K/2
2K2) = Ω(nL/K) lower bound on the space usage for any constant-error streaming

algorithm for graph coloring in the static setting. (Assuming, of course, that n/2 ≥ K > L =

Ω(log n).)

In particular, this lower bound implies that Ω(n) space is required for (∆+1)-coloring, matching

(up to polylog(n) factors) the upper bound of [ACK19]. While [ACK19]’s algorithm in particular

does not let us reduce space in exchange for increasing the number of colors, we note that a

variation of [BG18]’s algorithm does. For any integers K ≥ 2L = Ω(log n), consider the streaming

algorithm which uses an O(log n)-wise independent hash family to partition the set [n] of vertices

into O(K
logn) parts; and which records only the edges for which both endpoints lie in the same

parts. The algorithm will be able to color the graphs formed by the edges inside each part using

(with high probability) O(log n) colors; it does this for each part, using a fresh set of colors each

time. The total number of colors used will be O(K
logn log n) = K, and the algorithm will use only

O(nLK (log n)2) space. This matches, up to polylog(n) factors, the lower bound for the static setting.

4.4 A robust random-seed algorithm

In this section, we describe a simple algorithm for adversarially robust O(∆3) coloring, using semi-

streaming space, and only random-seed access to randomness. A more complicated algorithm using

O(∆2.5) colors, but requiring access to a random oracle, will be given in Section 4.5.

The O(∆3) coloring algorithm in this section uses a form of the sketch-switching framework of

[BJWY20]. In that framework, a robust algorithm runs multiple parallel copies of a classic stream-

ing algorithm, and at any given time presents outputs from just one of the instances. When the

current instance can no longer provide the required performance guarantee,8 the robust algorithm

8In one example of [BJWY20], the objective is to approximate a real valued function, and each instance is switched
out as soon as its output value no longer is within the approximation distance of the first output value it made that

127

discards the current instance and switches to presenting outputs from a different instance of the

classic algorithm. We will do almost the same thing: for Algorithm 4.4.1, we maintain O(∆) copies

of an specific O(∆3) coloring algorithm. Before these copies are used to output colorings, they

use Õ(n/∆) space each; the copy which is currently being used to output a coloring will use Õ(n)

space. The nested algorithm uses the similar design to [BCG20]: it partitions the set of vertices

into O(∆2) parts, and uses a fresh palette of O(∆)-colors to color each part. As long as the input

to the nested algorithm is not adaptively generated, only an O(1/∆2) fraction of the edges in the

input stream will have both endpoints in the same part, and might influence the coloring. All other

edges can be discarded. Of course, when the input to this nested algorithm is adaptively generated,

almost every input edge may have both endpoints in the same part, so once a copy of the nested

algorithm is revealed, it can only process Õ(n) adaptively generated edges before it risks running

out of space.

Theorem 4.4.1. Algorithm 4.4.1 is an adversarially robust O(∆3) coloring algorithm, which uses

Õ(n) bits of space (including random bits used by the algorithm) and succeeds with high probability.

Proof of Theorem 4.4.1. Let ℓ = ∆ be the driving parameter for Algorithm 4.4.1. Since curr only

increases every n∆/ℓ inputs, and the stream length is ≤ n∆/2, we will always have curr ≤ ℓ, so

the algorithm will only ever try to access hi,j or Di,j for i ∈ [ℓ]. The only step of Algorithm 4.4.1

that an adversary could make fail is Line 16.

By Lemma 4.4.2, this happens with 1/ poly(n) probability. Assuming Line 16 does not fail,

Lemma 4.4.3 proves that the output of the algorithm is a valid (∆ + 1)ℓ2 = (∆ + 1)∆2 coloring.

Finally, Lemma 4.4.4 verifies that Algorithm 4.4.1 uses at most Õ(n) bits of space, in total.

Lemma 4.4.2. Line 16 of Algorithm 4.4.1 will execute successfully, with high probability, on input

streams provided by an adaptive adversary.

Proof of Lemma 4.4.2. We first remark that the time range in which Algorithm 4.4.1 updates a

given setDi,j is disjoint from and happens before Algorithm 4.4.1 first uses the setDi,j . The setDi,j

is only updated when curr < i; and only used in the query routine when curr = i. Consequently,

looking at the outputs of the algorithm does not help an adversary ensure any property of Di,j . It

suffices, then, to prove that for a given i, that Line 16 succeeds with high probability on any fixed

input stream.

Let G be the graph encoded by the first n∆
ℓ (i − 1) edges of the input stream. Consider any

j ∈ [p]. Because hi,j is drawn from a 2-universal family, for any {u, v} ∈ G we have Pr[hi,j(u) =

was revealed. As graph coloring is a combinatorial, not an approximation problem, and a single input edge can
change the coloring, we rely more on designing algorithms for the instances that will work for a limited time after
being revealed.

128

Algorithm 4.4.1 Randomness-efficient adversarially robust O(∆3)-coloring in semi-streaming
space

Input: Stream of edge insertions of an n-vertex graph G = (V,E)

Initialize(parameter ℓ): ▷ For O(∆3)-coloring, set ℓ = ∆
Define p := ⌈10 log n⌉

1: ▷ One such family, by [CW79], is H1 = {(x 7→ (ax + b) mod p mod b) : a ∈ Zp \ {0}, b ∈ Zp},
where p is a prime ≥ n
Let U be a 2-universal family of hash functions from V to [ℓ2], of size O(poly(n))

2: for i ∈ [ℓ], j ∈ [p] do
3: hi,j be a uniformly random function from U mapping V to [ℓ2]
4: Di,j ← ∅ ▷ Either a set of hi,j-monochromatic edges, or ⊥ after invalidation

5: B ← ∅ ▷ buffer of edges from this epoch
6: curr← 1 ▷ current epoch number

Process(edge {u, v}):
7: if |B| ≥ n∆/ℓ then
8: B ← ∅; curr← curr+ 1 ▷ End current epoch, switch to next

9: B ← B ∪ {{u, v}}; ▷ Update current buffer
10: for i from curr+ 1 to ℓ, and j ∈ [p] do
11: if hi,j(u) = hi,j(v) then ▷ For hi,j-monochromatic edges...
12: if Di,j ̸= ⊥ ∧ |Di,j | < n∆

ℓ2
then

13: Di,j ← Di,j ∪ {{u, v}} ▷ Record edge in Di,j if there is space
14: else
15: Di,j ← ⊥ ▷ Wipe buffer Di,j if it gets too large

Query():
16: Let k = min{j ∈ [p] : Dcurr,j ̸= ⊥} ▷ This can fail if all Dcurr,j = ⊥
17: Let χ = greedy coloring of Dcurr,k ∪B
18: Output the coloring where y ∈ V is assigned (χ(y), hcurr,j(y)) ∈ [(∆ + 1)]× [ℓ2]

hi,j(v)] ≤ 1/ℓ2, so

E|Di,j | =
∑

{u,v}∈G

Pr[hi,j(u) = hi,j(v)] ≤
1

ℓ2
|G| ≤ n∆

2ℓ2
.

By Markov’s inequality,

Pr

[
|Di,j | ≥

n∆

ℓ2

]
≤ E|Di,j |
n∆/ℓ2

≤ 1

2
.

Since the hi,j are chosen independently, the events {|Di,j | ≥ n∆
ℓ2
}j∈[p] are independent, and the

probability that all of them hold is ≤ (1/2)p ≤ 1/n10; thus Line 16 succeeds with high probability.

129

Lemma 4.4.3. If Line 16 does not fail, then Algorithm 4.4.1 outputs a valid (∆+1)(∆2) coloring

of the input graph.

Proof of Lemma 4.4.3. We need to prove that after receiving each edge {u, v} in the graph, the

algorithm assigns different values to u and to v. Let k be the value of the variable k chosen at Line

16, and let c be the current value of curr. Since Dcurr,k ̸= ⊥, the set Dc,k contains all edges {a, b}
in the graph for which hc,k(a) = hc,k(b), and, at the time the edge was added, curr < c. All edges

for which curr = c held at the time the edge was added are stored in B. If hcurr,k(u) ̸= hcurr,k(v),

then the colors (χ(u), hcurr,k(u)) and (χ(v), hcurr,k(v)) assigned to u and v differ in the second

coordinate. Otherwise, the edge {u, v} ∈ Dcurr,k ∪ B, so the greedy coloring of Dcurr,k ∪ B will

assign different values to χ(u) and χ(v). This ensures the colors assigned to u and v differ in the

first coordinate.

Finally, the output color space [(∆ + 1)]× [ℓ2] has size ≤ (∆ + 1)∆2 = O(∆3).

Lemma 4.4.4. Algorithm 4.4.1 requires only Õ(n) bits of space; this includes random bits.

Proof of Lemma 4.4.4. Because |U| = O(poly n), picking a random hash function from U requires

only O(log n) random bits. As the algorithm stores ℓp = O(ℓ log n) of these hash functions for the

variables (hi,j)i∈[ℓ],j∈[p], the total space needed by these function is O(ℓ(log n)2).

Next, for each of the sets of edges Di,j , for i ∈ [ℓ], j ∈ [p], Lines 12 through 15 ensure that |Di,j |
is always ≤ n∆

ℓ2
+ 1; sets that grow too large are replaced by ⊥. Since edges can be stored using

O(log n) bits, the total space usage of all the Di,j is O(n∆
ℓ2
· ℓ · p · log n) = O

(
n∆
ℓ (log n)2

)
. Similarly,

the buffer B never contains more than n∆
ℓ edges, since it is reset when the condition of Line 7 is

true; thus B can be stored with O(n∆ℓ log n) bits. The counter curr is negligible. In total, the

algorithm uses O
(
n∆
ℓ (log n)2

)
= O

(
n(log n)2

)
bits of space.9

Corollary 4.4.5. By adjusting parameters of Algorithm 4.4.1, we obtain for any β ∈ [0, 1] a robust,

random-seed algorithm for O(∆3−2β)-coloring using Õ(n∆β) space.

Proof. Use Algorithm 4.4.1 with the parameter ℓ =
⌈
∆1−β

⌉
. The proofs on which Theorem 4.4.1

relies all go through as is, except that the number of colors used is now ℓ2(∆+1) = O(∆3−2β), and

the algorithm uses space O
(
n∆
ℓ (log n)2

)
= O(n∆β(log n)2).

Remark 4.4.6. For O(∆)-coloring algorithms in the static setting, O((log n)2) random bits suffice.

(See remark at end of Section 4.3.2). However, Algorithm 4.4.1 uses O(∆(log n)2) random bits

in total. Is this optimal? We suspect – but have not proven – that robust algorithms for graph

9It is possible to reduce the space usage to O
(
n∆
ℓ2

(logn)max(logn, ℓ)
)
space, by adjusting the algorithm to share

a pool of O(max(logn, ℓ)) hash functions between all epochs.

130

coloring with n/2 colors, which use semi-streaming space in fact require Ω̃(∆) bits of randomness,

if ∆ = Ω(log n), and we allow the graph stream to repeat edges.

Say that we could prove that pseudo-deterministic algorithms for (n/2)-coloring, when ∆ ≤ n/4,
require Ω(n∆/ polylog n) space. (Given the commonalities between the pseudo-deterministic and

deterministic lower bounds for MissingItemFinding from Sections 3.5 and 3.6, and the fact that

[ACS22]’s lower bound for deterministic graph coloring uses fundamentally the same approach as

we used for MissingItemFinding, this may well be possible.) Let r be the number of random bits

used by a robust random-seed graph coloring algorithm, for some r ≤ ∆/4. Let U be the set of all

streams which are split into O(r) equally sized epochs, where within each epoch the stream edges

form a graph of maximum degree O(∆/r). Then, using a similar argument to Lemma 3.7.1, one

can show that, when the streaming algorithm must be correct on all streams in U , it will require

space at least as large as that for a pseudo-deterministic algorithm on graphs of maximum degree

O(∆/r)—which may be Ω(n∆/(r polylog n)).

4.5 A robust random-oracle algorithm

In this section, we give an adversarially robust O(∆5/2)-coloring algorithm using semi-streaming

space and assuming access to a random oracle. This algorithm can be seen as an awkward hybrid

of two different O(∆3)-coloring algorithms; one which is most effective for graph streams in which

vertex degrees change slowly and steadily, and one which is most effective for graph streams in

which vertex degrees change sporadically but by large amounts.

We assume that
√
∆ is an integer (if not, we can work with

⌈√
∆
⌉
which will not affect the

asymptotic color or space bounds). We also assume that ∆ = Ω((log n)2); if ∆ is smaller, we can

store the entire graph in semi-streaming space and then color it optimally.

The following graph-theoretic concept plays a crucial role in our algorithm.

Definition 4.5.1 (degeneracy). The degeneracy of a graph G is the least integer value κ for which

every induced subgraph of G has a vertex of degree ≤ κ. Equivalently, it is the least value κ for

which there is an acyclic orientation of the graph where the maximum out-degree of any vertex

is ≤ κ. By greedily assigning colors to the vertices of this orientation of G in reverse topological

order, one obtains a proper (κ+ 1)-coloring of G; we refer to this as a (degeneracy + 1)-coloring.

4.5.1 High-level description and techniques

We first set up some terminology to help us outline our algorithm.

• Buffer. As the stream arrives, we explicitly store a buffer B of at most n edges. When the

buffer is full (i.e., has reached its capacity of n edges), we empty it completely, and move on

to storing the next batch of n edges.

131

• Epoch. We say we are in the ith epoch when we are storing the ith chunk of n edges in our

buffer.

• Level. We define levels for the vertices with respect to their degree in the (entire) graph seen

so far. At the point of query, we say that a vertex is in level ℓ, if its degree in the current

graph is in ((ℓ− 1)
√
∆, ℓ
√
∆].

• Zone (fast and slow). We define zones (fast or slow) for the vertices with respect to their

degree in the buffer B. At the time of query, we say that a vertex v is in the fast zone if

degB(v) >
√
∆; otherwise, we say that it is in the slow zone. We also use the terms slow

vertex and fast vertex, respectively.

• Block. We have multiple coloring functions, denoted by hi and gi, that assign each node

a color uniformly at random from a palette of suitable size (not to be confused with the

final proper coloring; these colorings are improper). As a result, we obtain a partition of

the nodes into monochromatic classes that we call “blocks.” A block produced by a coloring

function f is called an f -block. More formally, for each c in the range of f , the set of nodes

{v ∈ V : f(v) = c} is called an f -block.

• f-Monochromatic. An edge {u, v} with f(u) = f(v) is called f -monochromatic.

• f-Sketches. For a function f we call the underlying sketch of the algorithm, which receives

edges of the graph and stores it only if it is f -monochromatic, as an f -sketch.

Next, we describe how to color the slow vertices using O(∆5/2) colors in semi-streaming space.

Then we do the same for the fast vertices.

Coloring slow vertices. Consider breaking the edge stream into ∆ “chunks” of size n each. As

described above, our buffer B basically stores a chunk from start to end, and then deletes it entirely

and moves on to the next chunk. We initialize ∆ many coloring functions h1, . . . , h∆ that run in

parallel. For each i, the function hi assigns each node a color from [∆2] uniformly at random. An

hi-sketch (see definition above) processes the prefix of the stream until the end of chunk i. Recall

that “processing” means it stores a received edge (u, v) in the set Ai if it is hi-monochromatic.

Suppose a query arrives in the current epoch curr. Fix a subgraph induced by only the slow

vertices in an arbitrary hcurr-block on the edge set Acurr−1∪B (set A0 := ∅). Recolor this subgraph
using an offline ∆′ + 1-coloring algorithm where ∆′ is its max-degree. Now do this for each hcurr-

block, using fresh palettes for the distinct blocks. We then return the resultant coloring (for the

slow nodes). We now argue that the number of edges stored in (∪iAi) is roughly O(n) and the

number of colors used is O(∆5/2).

Observe that for each i, the hi-sketch processes the prefix of the stream until the end of epoch i.

But note that, until that point, we only base our output on Ajs for j < i, which are independent on

132

hi in particular. Therefore, we ensure that each hi-sketch processes a part of the stream independent

of their randomness. Hence, an edge (u, v) received by an hi-sketch is hi-monochromatic with

probability 1/∆2. Since it receives at most n∆ edges, it stores only O(n∆/∆2) = O(n/∆) edges in

expectation in Ai. By a Chernoff Bound argument, the actual value is tightly concentrated around

this expectation w.h.p. Then, the ∆ sets A1, . . . , A∆ store roughly O(n/∆ · ∆) = O(n) edges in

total w.h.p.

Now, we first verify that it properly colors the graph induced by the slow nodes. Observe that

we indeed stored each edge of the input graph, which is contained in any hcurr block of slow vertices,

in Acurr−1 ∪ B. This is because if it is in B, we have definitely stored it, and otherwise, it was in

an epoch ≤ curr− 1. Therefore, the hcurr−1-sketch received it and must have stored it in Acurr−1.

This means each intra-block edge is properly colored by the offline algorithm, and each inter-block

edge is also properly colored since we use distinct palettes for distinct blocks.

Now we argue the color bound. For each slow node, an hi-sketch receives at most ∆ edges

incident to it and hence, Ai stores O(∆ · 1/∆2) = O(1/∆) edges incident to it in expectation (by

the previous argument). By a Chernoff Bound argument and taking union bound over all nodes,

we get that each of them has degree roughly O(log n) in Ai w.h.p. Further, since these nodes are

slow, they have degree at most
√
∆ in B. Therefore, the degree of each slow node in the edge set

Acurr−1 ∪ B is O(
√
∆+ log n) = O(

√
∆) since ∆ is assumed to be Ω((log n)2). Hence, each hcurr-

block of slow nodes induced on Acurr−1 ∪B is colored with a fresh palette of O(
√
∆) colors by the

offline algorithm. There are ∆2 many hcurr-blocks, and therefore, we use O(∆2 ·
√
∆) = O(∆5/2)

colors.

Coloring fast vertices. To handle these, we use another
√
∆ coloring functions g1, . . . , g√∆.

Each gi assigns each node a color from [∆3/2] uniformly at random. When an edge {u, v} arrives,
let ℓ be the maximum between the two levels of u and v. We send it to the gi-sketches for all

i ≥ ℓ+ 1. Recall that a gi-sketch then stores the edge in the set Ci only if it is gi-monochromatic,

i.e., if gi(u) = gi(v).

We prove that each gi-sketch processes edges independent of their randomness. This is the

tricky part. Intuitively, for each edge {u, v} that a gi-sketch receives, the levels of u and v were

strictly smaller than i when it was inserted. Thus, the only values gj(u) and gj(v) that were used

to return outputs until then were for j < i. Hence, gi(u) and gi(v) were completely unknown

to the adversary when {u, v} was inserted. Thus, the edge stream received by each gi-sketch is

independent of the randomness “that matters” in processing it. Hence, since the probability that

each edge is gi-monochromatic is 1/∆3/2, each gi-sketch stores roughly O(n∆/∆3/2) = O(n/
√
∆)

edges in Ci. Thus, the total number of edges stored by C1, . . . , C√
∆ is O(n/

√
∆ ·
√
∆) = O(n).

When a query arrives, for each level i, we consider the fast vertices in each gi-block. Then con-

133

sider the subgraph induced by these vertices on the edge set Ci∪B. Color it using a (degeneracy+1)-

coloring offline algorithm. We prove that this colors the fast vertices properly with O(∆5/2) colors.

To verify that it is a proper coloring, we need to show that the subgraph of G induced on each

gi-block of fast vertices is stored in Ci ∪B. This follows from the “fastness” property of the nodes:

if any such edge {u, v} is not in the buffer B, then, since the degrees of u and v increased by at least
√
∆ in the buffer, the nodes u and v must have been at levels lower than i when {u, v} was inserted.

Therefore, it was fed to the gi-sketch, which stored it since it is gi-monochromatic. Hence, each

intra-block edge of fast vertices is properly colored by the offline algorithm, and each inter-block

edge is also properly colored since we use distinct palettes for distinct blocks.

4.5.2 The robust algorithm and its analysis

We now present the pseudocode of our algorithm in Algorithm 4.5.1. The analysis of correctness,

robustness, space usage, and color bound is given below.

Lemma 4.5.2. With high probability, for all vertices x ∈ V , we have
∑

i∈[
√
∆] dCi(v) = O(log n).

Proof of Lemma 4.5.2. For any x ∈ V , let D be the random variable for the degree of x at the

end of the stream, and let {x, Y1}, {x, Y2}, ... {x, YD} be the edges added adjacent to x by the

adversary, in order. For all k ∈ [∆] and ℓ ∈
√
∆, let Zk,ℓ be the random variable which is 1 if k ≤ D

and the algorithm stores the edge {x, Yk} in the set Cℓ, and zero otherwise. The edge {x, Yk},
assuming it exists, will be stored in Ci only if gi(x) = gi(Y) and i ≥

⌈
max(d(x),d(Yk))√

∆

⌉
+ 1, where

d(x) and d(Yk) are the values of the degree counter at the time the edge was added. Now, consider

the sequence of random variables,

Z1,1, . . . , Z1,
√
∆, Z2,1, . . . , Z2,

√
∆, . . . , Z∆,1, . . . , Z∆,

√
∆ . (4.4)

Their sum is precisely
∑

ℓ∈[
√
∆] dCℓ

(x). In order to bound this sum with high probability, we would

like to use Lemma 2.3.1, but in order for that to work we need to prove that the expectation of

a given Zk,ℓ, conditional on all the earlier terms in the sequence, is bounded. Let ≺ indicate the

lexicographic order on pairs of the form (k′, ℓ′), so that (k′′, ℓ′′) ≺ (k′, ℓ′) if either k′′ < k′, or (k′′ = k′

and ℓ′′ < ℓ′.). Define Z≺(k,ℓ) to be the vector (Zk′,ℓ′)(k′,ℓ′)≺(k,ℓ). We want to prove an upper bound

on E[Zk,ℓ | Z≺(k,ℓ)]. Intuitively, the edge {x, Yk} chosen by the adversary will either definitely not

be stored in Ck – because e.g. one of the degrees of the endpoints is too large – or, when it is time

to check whether gℓ(x) = gℓ(Yk), the value read from gℓ(Yk) will not have been revealed to the

adversary so far, nor will it have been read as part of any test to determine if {x, Yk′} should be

stored in Ck′ , for (k
′, k′) ≺ (k, k); so gℓ(Yk) will be independent of the variables in Z≺(k,ℓ), and will

equal gℓ(x) with probability exactly 1/∆3/2. Either way, we will find E[Zk,ℓ | Z≺(k,ℓ)] ≤ 1/∆3/2.

134

Algorithm 4.5.1 Adversarially robust O(∆2.5)-coloring in semi-streaming space

Input: Stream of edge insertions of an n-vertex graph G = (V,E)

Initialize:
1: d(v)← 0 for each v ∈ V ▷ degree counters
2: for i from 1 to [∆] do ▷ ∆ parallel copies for ∆ possible epochs
3: Let hi : V →

[
∆2
]
be uniformly random ▷ hi assigns each node a color from

[
∆2
]
u.a.r.

4: Ai ← ∅ ▷ edges stored by hi-sketch

5: for i from 1 to
[√

∆
]
do ▷

√
∆ parallel copies for

√
∆ possible levels

6: Let gi : V →
[
∆3/2

]
be uniformly random ▷ gi assigns each node a color from

[
∆3/2

]
u.a.r.

7: Ci ← ∅ ▷ edges stored by gi-sketch

8: B ← ∅ ▷ buffer
9: curr← 1 ▷ current epoch number

Process(edge {u, v}):
10: if |B| = n then
11: B ← ∅; curr← curr+ 1 ▷ Empty buffer if full and update epoch number

12: B ← B ∪ {{u, v}}; ▷ Update buffer and buffer size
13: d(u)← d(u) + 1; d(v)← d(v) + 1 ▷ Increase degrees of u and v
14: for i from (curr+ 1) to ∆ do ▷ Consider copies corresponding to higher epochs
15: if hi(u) = hi(v) then Ai ← Ai ∪ {{u, v}} ▷ Store hi-monochromatic edges in Ai

16: for i from
⌈
max{d(u),d(v)}√

∆

⌉
+ 1 to ∆ do ▷ Consider levels higher than both u and v

17: if gi(u) = gi(v) then Ci ← Ci ∪ {{u, v}} ▷ Store gi-monochromatic edges in Ci

Query():

18: F ← {v ∈ V : degB(v) >
√
∆} ▷ F contains fast vertices receiving >

√
∆ edges in the buffer

19: S ← V \ F ▷ S contains the remaining slow vertices
20: for c from 1 to [∆2] do
21: Scurr(c)← {w ∈ S : hcurr(w) = c} ▷ Consider each hcurr-block among slow vertices
22: Using fresh colors, (degree+1)-color subgraph induced by Scurr(c) on edge set Acurr−1 ∪B
23: for ℓ from 1 to

[√
∆
]
do

24: for c from 1 to
[
∆3/2

]
do

25: F (ℓ, c)←
{
w ∈ F :

⌈
d(w)√

∆

⌉
= ℓ, and gℓ(w) = c

}
▷ Consider each gℓ-block among fast

vertices
26: Using fresh colors, (degeneracy+1)-color subgraph induced by F (ℓ, c) on edge set Cℓ∪B
27: Output resultant coloring for S ∪ F = V

Now, applying Lemma 2.3.1 to the sequence of random variables from Eq. 4.4, we obtain:

Pr

 ∑
ℓ∈[

√
∆]

dCℓ
(x) ≥ 5 log n

 ≤ Pr

∑
k∈[∆]

∑
ℓ∈[

√
∆]

Zk,ℓ ≥ ∆3/2 · 1

∆3/2
(1 + 4 log n)


≤ exp(−(1 + 4 log n) ln(1 + 4 log n)− 4 log n) ≤ e−4.04 logn ≤ 1

n5
.

135

Then taking a union bound of this event for each x ∈ V , we conclude that
∑

i∈[
√
∆] dCi(x) =

O(log n) holds for all x with high probability.

Lemma 4.5.3. With high probability, for all vertices x ∈ V , we have
∑

i∈[∆] dAi(v) = O(log n).

Proof of Lemma 4.5.3. The argument here is essentially the same as for the proof of Lemma 4.5.2,

so we will skip most of the details, and describe briefly what changes.

Instead of defining indicator random variables Zk,ℓ for the event that Algorithm 4.5.1 stores a

given edge {x, Yk} in Cℓ, we define indicator random variables Zk,i, for i ∈ [∆], for the event that

the algorithm stores {x, Yk} in Ai. With a similar lexicographically ordered sequence of the Zk,i,

one can prove that each random variable Zk,i has expectation ≤ 1
∆2 , even after conditioning on

the values of all the earlier random variables in the sequence. This will use the observation that, if

the answer to whether the edge {x, Yk} will be stored in the set Ai depends on the value of hi(Yk),

then the value of hi(Yk) has not been revealed to the adversary. Applying Lemma 2.3.1, one will

then find:

Pr

∑
i∈[∆]

dAi(x) ≥ 5 log n

 ≤ Pr

∑
k∈[∆]

∑
i∈[∆]

Zk,i ≥ ∆2 · 1

∆2
(1 + 4 log n)

 ≤ exp(−4.04 log n) ≤ 1

n5
.

The proof is completed by taking a union bound.

Lemma 4.5.4. The space usage of Algorithm 4.5.1 is Õ(n) bits, with high probability.

Proof of Lemma 4.5.4. By Lemmas 4.5.3 and 4.5.2, all vertices x ∈ V satisfy
∑

i∈[∆] dAi(v) =

O(log n), and
∑

i∈[
√
∆] dCi(v) = O(log n), with high probability. Since

|Ci| =
1

2

∑
x∈V

dCi(x) and |Ai| =
1

2

∑
x∈V

dAi(x) ,

it follows Algorithm 4.5.1 stores O(n log n) edges in total in
⋃

i∈[∆]Ai ∪
⋃

i∈[
√
∆]Ci. Additionally,

it stores a buffer B of n edges. Hence, the algorithm stores Õ(n) edges in total. Further, it stores

a degree counter for each node and a couple of counters for tracking the buffer size and the epoch

number. These take an additional Õ(n) bits of space. Thus, the total space usage of the algorithm

is Õ(n) bits.

Lemma 4.5.5. At any point in the stream, for each ℓ ∈ [
√
∆] and c ∈ [∆3/2], the degeneracy of

the subgraph induced by the vertex set F (ℓ, c) on the edge set Cℓ ∪B is O(
√
∆), w.h.p.

Proof of Lemma 4.5.5. To every vertex v ∈ F (ℓ, c), define tv to be the length of the input stream

at the time that the degree counter d(v) of v increased from (ℓ− 1)
√
∆ to (ℓ− 1)

√
∆+ 1; in other

words, the time that vertex v entered level ℓ. By Lemma 4.5.2, with high probability it holds that

136

dCℓ
(v) = O(log n), so the set Cℓ contributes at most O(log n) = O(

√
∆) to the degeneracy of the

induced subgraph of the edge set Cℓ ∪B on the vertex set F (ℓ, c).

It thus suffices to prove that the degeneracy of the graph H on vertices of F (ℓ, c) formed by

edges from B \ Cℓ is ≤
√
∆. Orient each edge {u, v} in H from u to v if tv ≥ tu, and from v to u

otherwise. We will prove that the out-degree of each vertex from F (ℓ, c) in H will be ≤
√
∆.

Fix some x ∈ F (ℓ, c); for each edge (x, y) ∈ H, let dxy be the value of d(x) directly after

the streaming algorithm processed the edge {x, y}. Because x ∈ F (ℓ, c), we have dxy ≤ ℓ
√
∆.

Since x, y ∈ F (ℓ, c), gℓ(x) = gℓ(y) = c. Because {x, y} ∈ B \ Cℓ, max(dxy, dyx) must have been

≥ (ℓ − 1)
√
∆ + 1 – otherwise the algorithm would have recorded the edge {x, y} in Cℓ. Now the

orientation of the edge applies: because ty ≥ tx, the vertex xmust have reached degree (ℓ−1)
√
∆+1

at the same time or before y did. Thus dxy ≤ (ℓ− 1)
√
∆ implies dyx ≤ (ℓ− 1)

√
∆; since we know

max(dxy, dyx) > (ℓ− 1)
√
∆, it follows dxy ≤ (ℓ− 1)

√
∆. Since the variable d(x) increases with each

new edge adjacent to x that arrives, and dxy ∈ [(ℓ− 1)
√
∆+1, ℓ

√
∆] for all out-edges (x, y) of x in

H, we conclude by the pigeonhole principle that x has out-degree ≤
√
∆ in H. This completes the

proof that the degeneracy of H is
√
∆, and thus of the lemma.

Lemma 4.5.6. Whenever queried, Algorithm 4.5.1 outputs a proper coloring of the current graph

G and uses O(∆5/2) colors w.h.p.

Proof of Lemma 4.5.6. By Lemma 4.5.3 and Lemma 4.5.2, with high probability,

max
x∈V

 ∑
i∈[

√
∆]

dCi(v) +
∑
i∈[∆]

dAi(v)

 = O(log n) . (4.5)

We shall see that if this holds, then Algorithm 4.5.1 will produce an O(∆2.5) coloring of the graph.

The total number of colors used is the sum of the number of colors used for the coloring of each

of the subsets of vertices Scurr(c) (for c ∈ [∆2]) and F (ℓ, c) (for c ∈ [∆3/2], ℓ ∈ [
√
∆]). Because each

of these subsets uses a fresh set of colors, and the subsets together disjointly cover the entire vertex

set, the coloring output by Algorithm 4.5.1 is valid if an only if all the individual subset colorings

are valid.

For each c ∈ [∆2], consider the set Scurr(c). For each edge {x, y} in the graph, both of whose

endpoints are in Scurr(c), we observe that either the edge {x, y} was added while the value of curr

was less than it was now – in which case the algorithm would have stored {x, y} ∈ Acurr, because

hcurr(x) = hcurr(y) – or edge {x, y} was added while curr had its current value – in which case

{x, y} is in the set B. Thus, Acurr ∪ B includes all the edges of the subgraph of G induced by

Scurr(c), so the degree + 1 coloring of Scurr(c) will be valid.

137

Every vertex x in Scurr(c) satisfies degB(x) ≤
√
∆, by the definition of the set S of slow vertices.

By Eq. 4.5, degCcurr
(x) = O(log n) = O(

√
∆). Thus the maximum degree the edge set Ccurr ∪ B

for any vertex in Scurr(c) will be O(
√
∆), and so a degree+1 coloring will only use O(

√
∆) colors.

Now for c ∈ [∆3/2] and ℓ ∈ [
√
∆], consider the set F (ℓ, c) of vertices. To prove that the coloring

of this set is correct, we must show that every edge {x, y} which is contained in G, and which has

both endpoints in F (ℓ, c), must be recorded in either B or in Cℓ. Let dx and dy be the values of

d(x) and d(y) after the Algorithm 4.5.1 processes the edge {x, y}, i.e., after Line 13 has executed.

We have two cases: either ℓx,y =
⌈
max(dx, dy)/

√
∆
⌉
is equal to ℓ, or it must be less than ℓ. If

ℓx,y < ℓ, then the edge will be recorded in Cℓ by Line 17. Both the degree check and the check that

gℓ(x) = gℓ(y) will pass, the latter because x, y ∈ F (ℓ, c) implies gℓ(x) = gℓ(y) = c. On the other

hand, if ℓx,y = ℓ, then say without loss of generality that
⌈
dx/
√
∆
⌉
= ℓ – this implies the degree of

x just after the edge {x, y} was added was at least (ℓ− 1)
√
∆+1. Meanwhile, because x ∈ F (ℓ, c),

the current degree of x must be at most (ℓ− 1)
√
∆. As each new edge adjacent to x increases d(x)

by one, {x, y} must be one of the
√
∆ most recent edges added adjacent to x. Since x ∈ F , the last

√
∆ edges adjacent to x are all stored in B, and thus {x, y} ∈ B. The completes the proof that the

coloring of F (ℓ, c) will be correct.

By Lemma 4.5.5, the degeneracy of the subgraph induced by the vertex set F (ℓ, c) on edge set

Cℓ ∪ B will be O(
√
∆), assuming Eq. 4.5 holds. As Algorithm 4.5.1 computes a degeneracy+1

coloring of this graph, it will use O(
√
∆) colors.

We have proven that each of the subsets of the form Scurr(c) or F (ℓ, c) will be properly colored

using O(
√
∆) fresh colors. Since there are 2∆2 such subsets in total, we conclude that algorithm

Algorithm 4.5.1 produces an O(∆5/2) coloring of the graph as a whole.

Combining Lemma 4.5.6 with Lemma 4.5.4 proves the theorem:

Theorem 4.5.7. There is an O(∆5/2)-coloring algorithm which is robust (with total error proba-

bility ≤ δ) against adaptive adversaries, and runs in O(n polylog n · log 1
δ) bits of space, given oracle

access to O(n∆) bits of randomness.

Furthermore, we have:

Corollary 4.5.8. By adjusting parameters of Algorithm 4.5.1, we obtain for any β ∈ [0, 1] a

robust O(∆(5−3β)/2)-coloring algorithm using Õ(n∆β) space, assuming oracle access to O(n∆) bits

of randomness.

Proof of Corollary 4.5.8. These parameter changes do not significantly affect the proofs of correct-

ness for Algorithm 4.5.1.

As before, we assume that the powers of ∆ given here are integers, and that ∆ = Ω((log n)2):

138

• Change the buffer replacement frequency (Line 10) from n to n∆β. Because a graph stream

with maximum degree ∆ contains at most n∆/2 edges, reduce the number of epochs from ∆

to ∆1−β. The for loops initializing, updating, and querying the variables hi and Ai should

have bounds adjusted accordingly.

• Reduce the range of the functions hi from [∆2] to [∆2−2β]. The expected number of edges

stored in all of the sets Ai will now be roughly:

epochs× |G|
slow blocks

=
∆1−β ·O(n∆)

∆2−2β
= O(n∆β) ,

and with high probability, the space usage should not exceed this by more than a logarithmic

factor.

• Increase the threshold for a vertex to be considered “fast” from
√
∆ to ∆(1+β)/2. To match

this, the level of a vertex will now be computed as
⌈

d(v)

∆(1+β)/2

⌉
, and the number of levels

reduced from
√
∆ to ∆(1−β)/2. Again, all of the for loops related to the fast zone of the

algorithm need to have their bounds adjusted.

• Reduce the range of the functions gℓ from [∆3/2] to [∆(1−β)3/2]. The expected number of

edges stored in all of the sets Cℓ will now be roughly:

levels× |G|
fast blocks

=
∆(1−β)/2 ·O(n∆)

∆(1−β)3/2
= O(n∆2β) .

The number of colors used by the vertices in the slow zone will be:

slow blocks× (O(# fast threshold) +O(log n)) = ∆2−βO(∆(1+β)/2) = O(∆(5−3β)/2) ,

and by the fast zone:

levels×# fast blocks×O(# fast threshold) + log n)) = ∆(1−β)/2∆(1−β)3/2O(∆(1+β)/2)

= O(∆(5−3β)/2) .

Combining the two, we find the modified algorithm produces a O(∆(5−3β)/2) coloring with high

probability.

4.6 A multipass deterministic algorithm

This section gives a multipass deterministic semi-streaming algorithm for (∆+1)-coloring, proving

Theorem 4.6.11. As usual, let G = (V,E) denote the input graph, which has n = |V | vertices and

139

maximum degree ∆. Later, we shall extend our algorithm to the (deg+1)-list-coloring problem, so

it will be helpful to think of each vertex x ∈ V being associated with a set Lx of allowed colors; for

the algorithm we discuss first, Lx = [∆ + 1] for each x ∈ V .

We will later need the following lemma that establishes the existence and constructibility of a

large independent set in a sparse graph.

Lemma 4.6.1 (A constructive variation on Turán’s theorem). Given a graph with n vertices and

m edges, one can find an independent set of size ≥ n2/(2m+ n) in deterministic polynomial time.

Proof of Lemma 4.6.1. We prove that we can in deterministic polynomial time find an independent

set in graph G of size ≥ ψ(G) :=
∑

x∈V
1

deg x+1 . By Jensen’s inequality,

ψ(G) ≥ |V |2∑
x∈V (deg x+ 1)

=
n2

n+ 2m
.

The procedure is straightforward: let U ← V be the set of “uncovered” vertices, and I ← ∅ the
independent set, which we will progressively expand. While U is not empty, pick x ∈ U minimizing∑

y∈N [x]
1

degG[U](y)+1 , and remove the closed neighborhood N [x] from U , and add x to I. To prove

that this produces a set I of size ≥ ψ(G), we show that every time a new vertex is picked, ψ(G[U])

decreases by at most 1. First, note that:

min
x∈U

∑
y∈N [x]

1

degG[U](y) + 1
≤ 1

|U |
∑
x∈U

∑
y∈N [x]

1

degG[U](y) + 1
=

1

|U |
∑
z∈U

|N [z]|
degG[U](z) + 1

=
|U |
|U |

= 1 .

Second,

ψ(G[U])−ψ(G[U \N [x]])

=
∑
z∈U

1

degG[U\N [x]] z + 1
−

∑
z∈U\N [x]

1

degG[U\N [x]] z + 1

=
∑

z∈N [x]

1

degG[U\N [x]] z + 1
+

∑
z∈U\N [x]

(
1

degG[U](z) + 1
− 1

degG[U\N [x](z) + 1

)

≤
∑
z∈U

1

degG[U\N [x]] z + 1
+

∑
z∈U\N [x]

0 ,

because degG[U](z) ≥ degG[U]\N [x](z). Combining these two inequalities gives ψ(G[U \ N [x]]) ≥
ψ(G[U])− 1.

140

4.6.1 High-level organization

The algorithm’s passes are organized as follows. The algorithm proceeds in epochs, where each

epoch starts with a partial coloring χ that has a certain subset U ⊆ V uncolored and ends with

a new partial coloring that extends χ by coloring at least a constant fraction of the vertices in U ,

thereby shrinking |U | to α|U |, for some constant α < 1. In the beginning, U = V . After at most⌈
log1/α∆

⌉
such epochs, we will have |U | ≤ n/∆: at this point, the algorithm makes a final pass to

collect all edges incident to U and greedily extend χ to a full coloring of G. See Algorithm 4.6.1

for the high level pseudocode.

Algorithm 4.6.1 Deterministic semi-streaming algorithm for (∆ + 1)-coloring

1: procedure Deterministic-Coloring(streamed n-vertex graph G = (V,E) with max degree
∆)

2: U ← V ; χ(x)← ⊥ for all x ∈ V ▷ all vertices uncolored
3: repeat
4: Coloring-Epoch(G,U, χ) ▷ See Algorithm 4.6.2; shrinks |U | to at most α|U |
5: until |U | ≤ n/∆
6: In one pass, collect every edge incident to a vertex in U
7: Use these edges to greedily complete χ to a proper coloring of G

Each epoch of the algorithm is divided into stages, where each stage whittles down a set of

proposed colors for each uncolored vertex. To explain this better, the following definition is useful.

Definition 4.6.2 (partial commitment, slack, potential). A partially committed coloring (PCC) of

G is an assignment of colors and lists to the vertices satisfying the following conditions.

• Every vertex outside a subset U ⊆ V of uncolored vertices is assigned a specific color χ(x) ∈
Lx; the resulting χ is a proper partial coloring.

• Each x ∈ U has an associated set Px of proposed colors, defining a collection P = {Px}x∈U .

• For every two vertices x, y ∈ U , either Px = Py or Px ∩ Py = ∅.

We shall denote such a PCC by the tuple (U, χ,P). Given such a PCC, define the slack of a vertex

with respect to a set T of colors by

slack(x | T) = max{0, |T ∩ Lx| − |{y ∈ N(x) \ U : χ(y) ∈ T}|} , (4.6)

and further define sx = slack(x | Px); that is, sx is the number of colors in Px that are available to

x in Lx minus the number of times the colors in Px have appeared in the already colored neighbors

of x. Define the potential of the PCC to be

Φ = Φ(U, χ,P) =
∑

{x,y}∈E

1x∈U∧y∈U · 1Px=Py ·
(

1

sx
+

1

sy

)
(4.7)

141

which sums the quantity (1/sx + 1/sy) over all edges {x, y} inside U with Px = Py.

Intuitively, the slack defined here is a lower bound on the number of unused colors available to a

vertex. Our definition differs slightly from the “slack” defined by [HKNT22], where the number of

colors used by the neighbors is known exactly. It turns such a lower bound on the number of unused

colors is sufficient for our algorithm to progressively refine a PCC. The advantage of this lower bound

– equivalently, of using an upper bound on the number of used colors, |{y ∈ N(x) \U : χ(y) ∈ T}|,
instead of the exact quantity |T ∩ {χ(y) : y ∈ N(x) \ U}| – is that the former can be written

as a summation
∑

y:{x,y}∈E 1y/∈U1χ(y)∈T over the data stream, which can be easily computed in

O(log n) space. Meanwhile, as a consequence of the set disjointness lower bound in communication

complexity, determining the latter can require up to Ω(∆) space. In the LOCAL and CONGEST

models, each vertex can easily store and maintain a list of all its available colors (equivalently,

colors used by its neighborhood), so the algorithms of [GK21, BKM20] do not need such a modified

notion of “slack”.

The set Free(T, x) := (T∩Lx)\{χ(y) : y ∈ N(x)\U} is the set of all colors in T that are available

for x, in light of the local constraints imposed by Lx and χ. Notice that |Free(T, x)| ≥ slack(x | T),
since a color in T might be used more than once in the neighborhood of x, thus reducing the LHS

only once, but the RHS more than once. Hence, if we extend χ to a full coloring by choosing,

independently for each x ∈ U , a uniformly random color in Free(Px, x), the only monochromatic

edges we might create are within U and the number, mmono(U, χ,P), of such edges satisfies

Emmono(U, χ,P) =
∑

{x,y}∈E(G[U])
Px=Py

|Free(Px, x) ∩ Free(Py, y)|
|Free(Px, x)| · |Free(Py, y)|

≤
∑

{x,y}∈E(G[U])
Px=Py

(
1

sx
+

1

sy

)
= Φ . (4.8)

4.6.2 The logic of an epoch: extending a partial coloring

Returning to the algorithm outline, at the start of an epoch, the current partial coloring χ and its

corresponding set U of uncolored vertices define a trivial PCC where Px = Lx = [∆ + 1] for each

x. We shall eventually show that the resulting potential Φ ≤ |U |. Each stage in the epoch shrinks

these sets Px in such a way that the potential Φ does not increase much. After several stages,

each Px in the PCC becomes a singleton and the bound on Φ, together with eq. (4.8), ensures that

assigning each x ∈ U the sole surviving color in Px would not create too many monochromatic

edges. Now, Lemma 4.6.1 allows us to commit to these proposed colors for at least (1 − α)|U | of
the uncolored vertices; this defines a new partial coloring and ends the epoch.

We now describe how to shrink the sets Px. For this, view each color as a b-bit vector where

b = ⌈log(∆ + 1)⌉ according to some canonical mapping, e.g., a ∈ {0, 1}b 7→ 1 +
∑b

i=1 ai2
i−1.

Each set Px will correspond to a subcube of {0, 1}b where the first several bits have been fixed to

142

particular values.10 Each stage of the rth epoch (except perhaps the last, due to divisibility issues)

will shrink each Px by fixing an additional k bits of its subcube, thus reducing the dimension of

the subcube. We choose k := 1 + ⌊log(n/|U |)⌋, so that |U |2k ≤ 2n; this bound will be important

when we analyze the space complexity. The epoch ends when all bits of each Px have been fixed,

making each Px a singleton; clearly, this happens after ⌈b/k⌉ stages.
This brings us to the heart of the algorithm: we need to describe, for each x ∈ U and the

particular value of k for the current epoch, how to fix the next k bits for Px. Let Px,j be the subset

of Px where the k lowest-indexed free bits are set to j ∈ {0, 1}k: this partitions Px into 2k subcubes.

Define

wx,j =
slack(x | Px,j)∑

i∈{0,1}k slack(x | Px,i)
. (4.9)

An easy calculation shows that if, for each x, we choose j at random according to the distribution

given by (wx,j)j∈{0,1}k to obtain a new random collection P̃ of proposed color sets for each vertex,

then

EΦ(U, χ, P̃) = Φ(U, χ,P) . (4.10)

Therefore, there exists a particular realization P ′ of P̃ such that Φ(U, χ,P ′) ≤ Φ(U, χ,P). However,
it is not clear how to identify such a P ′ deterministically and in a space-efficient manner in a stream.

A key idea that enables a space-efficient derandomization is to choose the j values for the vertices

x ∈ U in a pseudorandom fashion, using a 2-independent family H of hash functions V 7→ [p] for a

not-too-large value p. By using a suitable map g : U × [p]→ {0, 1}k, we can use a uniform random

value in [p] to sample from a distribution close enough to the (wx,j) distribution. Then, for each x,

we shrink Px to Px,j(x) where j(x) = g(x, h(x)) and h ∈R H. Let Ph denote the resulting collection

of proposed color sets.

It turns out that a prime p = Θ(n log n) suffices for the guarantees we will eventually need.

Thus, by choosing (e.g.) the Carter–Wegman family of affine functions on Fp, we can take |H| =
O(n2(log n)2). This enables us to use two streaming passes11 with Õ(n) space to identify a specific

function h ∈ H for which Φ(U, χ,Ph) is “approximately below” the average value for functions in

H. We will then show that the new potential is at most 1 + O(1/ log n) times the old. Repeating

this argument for each of the O(log n) stages in the epoch shows that at the end of the epoch, the

potential will have increased by at most a constant factor which will then allow us to shrink U by

10If ∆+1 is not a power of 2, Px might contain elements not in Lx, but this doesn’t matter because Free(T, x) ⊆ Lx

always.
11Can we reduce the number of passes to one, using a different hash family? We use 2-independence for Eq. 4.13

to hold for arbitrary weight pairs wu,j, wv,j, and the weights can be as small as 1/∆, suggesting that Ω(∆2) different
functions may be needed, which is too many if e.g. ∆ = Ω(n2/3); but there might be ways around this.

143

a constant factor α, as noted earlier.

The above outline suggests O(log n) epochs, each using O(log n) stages, each of which uses

O(1) passes. Later, we shall show that a more careful analysis bounds the number of passes by

O(log∆ log log∆).

4.6.3 Detailed algorithm and proof of correctness

We now describe the algorithm more formally, by fleshing out the precise logic of an epoch. Let

Q(i) denote the partition of the color space {0, 1}b into subcubes Q
(i)
j defined by setting the ith

k-bit block to each of the 2k possible patterns j; i.e.,

Q
(i)
j :=

{
a ∈ {0, 1}b : (aki−k+1, . . . , aki) = j

}
; Q(i) :=

{
Q

(i)
j

}
j∈{0,1}k . (4.11)

If k does not divide b, we must make an exception for the ⌈b/k⌉th partition, for which the relevant

bit patterns j would be shorter; for clarity of presentation, we shall ignore this edge case in what

follows.

Before we proceed, we also need the following lemma:

Lemma 4.6.3. For ε > 0, p ≥ n/ε, and w = (wx,j)x∈U,j∈{0,1}k there is a function gw : U × [p] →
{0, 1}k satisfying:

|g−1
w (x, j)|
p

≤ wx,j (1 + ε) , ∀ j ∈ {0, 1}k .

Proof of Lemma 4.6.3. As
∑

j∈{0,1}k wx,j = 1, we can do this by directing the first ⌊pwx,0(1 + ε)⌋
entries of gw(x, ·) to the pattern 0; the next ⌊pwx,1(1 + ε)⌋ entries to the pattern 1; and so on

(where 0,1, . . . is an enumeration of {0, 1}k), stopping as soon as all p entries of gw(x, ·) are filled.

We now argue that gw is well-defined, i.e., that every entry gw(x, ·) is indeed filled. Examining

eq. (4.6), since every slack value is at most n, every nonzero value wx,j is ≥ 1/n. Recalling that

p ≥ 8n log n, we observe that for such j,

⌊pwx,j (1 + ε)⌋ ≥ pwx,j + (pwx,jε)− 1 ≥ pwx,j +
n(1/n)ε

ε
− 1 = pwx,j ,

so a total of ≥
∑

j∈{0,1}k pwx,j ≥ p entries gw(x, ·) will be covered.

The full logic for the epoch is given in Algorithm 4.6.2.

The most important aspect of the analysis is to quantify the progress made in each epoch and

establish that the colors proposed at the end of each stage do not produce too many monochromatic

edges (i.e., those in F .) This analysis will demonstrate the utility of the potential defined in eq. (4.7).

144

Algorithm 4.6.2 Partial coloring step for Algorithm 4.6.1

1: procedure Coloring-Epoch(graph G, partial coloring (U, χ))
2: ε← 1

8 logn ▷ precision for hash functions and sum calculations
3: b← ⌈log(∆ + 1)⌉ ▷ each color is a b-bit vector
4: k ← 1 + ⌊log (n/|U |)⌋ ▷ number of bits fixed in each stage
5: for all x ∈ U do Px ← {0, 1}b ▷ the initial, trivial PCC

6: for all stage i, from 1 through ⌈b/k⌉ do
7: pass 1:
8: for all x ∈ U and Q ∈ Q(i) do compute slack(x | Px ∩Q) by using eq. (4.6)

9: end
10: Determine all wx,j values using eq. (4.9), noting that Px,j = Px ∩Q(i)

j

11: p← prime in [⌈n/ε⌉, 2⌈n/ε⌉]; H ← {z 7→ az+ b : a, b ∈ Fp} ▷ Carter–Wegman hashing
12: Implicitly construct gw : U × [p]→ {0, 1}k as per Lemma 4.6.3.

13: For each h ∈ H, define Ph = {Px,h}x∈U , where Px,h := Px ∩Q(i)
gw(x,h(x))

14: ▷ Identify an h⋆ ∈ H for which Φ(U, χ,Ph⋆) is not much larger than average, as follows:
15: pass 2:
16: Split H into

√
|H| parts

17: Estimate
∑

hΦ(U, χ,Ph) for each part, up to (1 + ε) relative error
18: Pick the part minimizing the estimated sum
19: end
20: pass 3:
21: Estimate Φ(U, χ, h) for each h within the chosen part, up to (1 + ε) relative error
22: Choose h⋆ as the (approximate) minimizer
23: end
24: for all x ∈ U do Px ← Px,h⋆ ▷ constrain the PCC more tightly

25: end-of-epoch pass: ▷ each Px is now a singleton
26: Collect F ← {{u, v} ∈ E : u ∈ U, v ∈ U, and Pu = Pv} ▷ we will prove that
|F | = O(|U |)

27: In the graph (V, F), find an independent set I with |I| ≥ (1−α)|U |, using Lemma 4.6.1
28: for all x ∈ I do ▷ extend χ by coloring x
29: U ← U \ {x}
30: χ(x)← the sole element in Px

31: end

145

Given a PCC (U, χ,P) where P = {Px}x∈U , define the “conflict degree” of each x ∈ U by

dconf(x) = dconf(x;U, χ,P) := |{y ∈ N(x) ∩ U : Py = Px}| , (4.12)

which counts the neighbors of x that could potentially form monochromatic edges with x, were we

to assign colors from P to the uncolored vertices. Recall the quantities sx = slack(x | Px) from

Definition 4.6.2.

Lemma 4.6.4. For every PCC, Φ(U, χ,P) =
∑

x∈U dconf(x)/sx.

Proof of Lemma 4.6.4. From the definitions in eqs. (4.6) and (4.7), using some straightforward

algebra,

Φ(U, χ,P) =
∑

{u,v}∈E(G[U])
Pu=Pv

(
1

su
+

1

sv

)
=
∑
x∈U

|{y ∈ U : {x, y} ∈ E ∧ Px = Py}|
sx

=
∑
x∈U

dconf(x)

sx
.

Lemma 4.6.5. For all x and disjoint sets T1, T2: slack(x | T1 ⊔ T2) ≤ slack(x | T1) + slack(x | T2).

This lemma follows immediately from eq. (4.6) and the fact that max{0, a1+a2} ≤ max{0, a1}+
max{0, a2}.

Lemma 4.6.6. Suppose we start a particular epoch with the partial coloring (U, χ) and the initial,

trivial PCC (U, χ,P0). Suppose there are ℓ stages in this epoch and the ith stage begins with the

PCC Pi. Let Φi := Φ(U, χ,Pi) be the corresponding potential, for 0 ≤ i ≤ ℓ. Then Φ0 ≤ |U | and
Φℓ ≤ 2|U |.

Proof of Lemma 4.6.6. Recalling that each Lx ∩ Px = Lx = [∆ + 1] for the initial PCC, we use

eqs. (4.6) and (4.12) to derive

sx − dconf(x) = max{0,∆+ 1− |N(x) \ U |} − |N(x) ∩ U | = ∆+ 1− deg(x) ≥ 1 .

Thus, dconf(x)/sx ≤ 1 (and is not “0/0”) for all x ∈ U . Lemma 4.6.4 now implies Φ0 ≤ |U |.
We now argue that, between each pair of successive stages, the potential Φi does not increase

by much. First observe that when h is drawn uniformly at random from H, and u ̸= v,

Pr [gw(u, h(u)) = gw(v, h(v)) = j] = Pr [gw(u, h(u)) = j] · Pr [gw(v, h(v)) = j]

= Pr
[
h(u) ∈ g−1

w (u, j)
]
· Pr

[
h(v) ∈ g−1

w (v, j)
]

≤ wu,jwv,j (1 + ε)2

≤ e2εwu,jwv,j . (4.13)

To keep the rest the derivation compact, let us abbreviate “slack” to “sk.” The candidate PCCs

Ph defined in line 13 are tightenings of the current PCC in which we pick subcubes according to

146

the specific hash function h. With h chosen uniformly at random from H:

EΦ(U, χ,Ph)

=
∑

{u,v}∈E

E1u∈U1v∈U · 1Pu,h=Pv,h
·
(

1

sk(u | Pu,h)
+

1

sk(v | Pv,h)

)

=
∑

{u,v}∈E(G[U])

∑
j∈{0,1}k

Pr [Pu,h = Pu,j = Pv,j = Pv,h]

(
1

sk(u | Pu,j)
+

1

sk(v | Pv,j)

)
line 13
=

∑
{u,v}∈E(G[U])

∑
j∈{0,1}k

1Pu=Pv Pr [gw(u, h(u)) = gw(v, h(v)) = j]

(
1

sk(u | Pu,j)
+

1

sk(v | Pv,j)

)
eq. (4.13)

≤
∑

{u,v}∈E(G[U])
Pu=Pv

∑
j∈{0,1}k

e2εwu,jwv,j

(
1

sk(u | Pu,j)
+

1

sk(v | Pv,j)

)
eq. (4.9)

= e2ε
∑

{u,v}∈E(G[U])
Pu=Pv

∑
j∈{0,1}k

sk(u | Pu,j)∑
i sk(u | Pu,i)

·
sk(v | Pv,j)∑
i sk(v | Pv,i)

·
(

1

sk(u | Pu,j)
+

1

sk(v | Pv,j)

)

= e2ε
∑

{u,v}∈E(G[U])
Pu=Pv

∑
j∈{0,1}k

sk(u | Pu,j) + sk(v | Pv,j)∑
i sk(u | Pu,i) ·

∑
i sk(v | Pv,i)

= e2ε
∑

{u,v}∈E(G[U])
Pu=Pv

(
1∑

j sk(u | Pu,j)
+

1∑
j sk(v | Pv,j)

)
lemma 4.6.5
≤ e2ε

∑
{u,v}∈E(G[U])

Pu=Pv

(
1

sk(u | Pu)
+

1

sk(v | Pu)

)

= e2εΦi . (4.14)

Thus, picking h⋆ with Φ(U, χ,Ph⋆) below average would ensure Φi+1 ≤ e2εΦi. However, due to

precision constraints, each of lines 17 and 21 could contribute a relative error of (1 + ε), so the h⋆

actually picked by the algorithm gives only the following weaker guarantee:

Φi+1 ≤ (1 + ε)2 e2εΦi ≤ e4εΦi .

Since the number of stages in the epoch is ℓ ≤ ⌈b/k⌉ ≤ log(∆ + 1) ≤ log n, and ε = 1/(8 log n)

we have

Φℓ ≤
(
e4ε
)ℓ
Φ0 ≤ e1/2|U | ≤ 2|U | .

The crucial combinatorial property of the (∆ + 1)-coloring problem is that given any proper

partial coloring, every uncolored vertex is guaranteed to have a free color not in use by its colored

neighbors. The next lemma argues that even as we gradually tighten constraints in our PCC during

the stages of an epoch, a similar guarantee is maintained.

147

Lemma 4.6.7. In each epoch, for all x ∈ U , the stages maintain the invariant that sx ≥ 1 and

after the last stage we have sx = 1.

Proof of Lemma 4.6.7. At the start of the epoch, sx ≥ |Lx| − |N(x)| = (∆+ 1)− deg(x) ≥ 1.

Consider a particular stage, which begins with a PCC (U, χ,P), where P = {Px}x∈U . Fix a

vertex x ∈ U . In the next PCC formed at the end of the stage, Px shrinks down to Px,j = Px ∩Q(i)
j

for a pattern j ∈ {0, 1}k satisfying wx,j > 0: the way gw is defined (Lemma 4.6.3) ensures this. By

Lemma 4.6.5, ∑
i∈{0,1}k

slack(x | Px,i) ≥ slack(x | Px) = sx ≥ 1 ,

so there exists j ∈ {0, 1}k for which slack(x | Px,j) ≥ 1. One such j must be picked as the chosen

pattern for x, because wx,j > 0 implies slack(x | Px,j) > 0. Consequently, the new value of Px

chosen at the end of the stage (line 24) will continue to satisfy the invariant sx ≥ 1.

After the last stage in the epoch, every set Px is a singleton because, in the corresponding

subcube of {0, 1}b, all bits have been fixed. It is not possible that Px is empty, because |Px ∩Lx| ≥
sx ≥ 1. Thus |Px ∩ Lx| = sx = 1.

Lemma 4.6.8. The set F collected at the end of an epoch satisfies |F | ≤ |U |.

Proof of Lemma 4.6.8. Using the terminology of Lemma 4.6.6, at the end of an epoch, we have

2|U |
lemma 4.6.6
≥ Φℓ

lemma 4.6.4
=

∑
x∈U

dconf(x)

sx

lemma 4.6.7
=

∑
x∈U

|{y ∈ N(x) ∩ U : Px = Py}|
1

= 2|F | .

Lemma 4.6.9. Each epoch maintains the invariant that (U, χ) is a proper partial coloring and

shrinks the set of uncolored vertices U to a smaller U ′ with |U ′| ≤ 2
3 |U |.

Proof of Lemma 4.6.9. As noted before, at the end of the epoch, each set Px is a singleton and the

sole color cx ∈ Px is not used in N(x) because sx ̸= 0 (Lemma 4.6.7). Therefore, the set F collected

at the end is precisely the set of edges that would be monochromatic if we colored each x ∈ U with

cx. It follows that the end-of-epoch logic in the algorithm, which commits to these colors only on

an independent set in the graph (V, F), maintains the invariant of a proper partial coloring.

By Lemma 4.6.1, (V, F) contains an independent set I of size

|I| ≥ |U |2

2|F |+ |U |
lemma 4.6.8
≥ |U |

3

and one can compute I in polynomial time. Therefore, |U ′| = |U | − |I| ≤ 2
3 |U |.

148

4.6.4 Space and pass complexity

Lemma 4.6.10. Algorithm 4.6.1 runs in O(n(log n)2) bits of space and O(log∆ · log log∆) stream-

ing passes.

Proof of Lemma 4.6.10. For the space bound, it suffices to establish that Coloring-Epoch runs

in O(n(log n)2) space. At each stage of an epoch, the algorithm maintains the current PCC,

consisting of the partial coloring (U, χ) and the collection P = {Px}x∈U . The former can be stored

in O(n log∆) bits directly; so can the latter, since the subcube structure of Px allows for a natural

O(b) = O(log∆)-bit description.

We now turn to the space required to execute the passes. Focus on stage i within epoch r.

Computing the slack values in pass 1 requires |U |2k counters, one for each pair (x,Q
(i)
j), to determine

|{y ∈ N(x) : χ(y) ∈ Px ∩ Q(i)
j }|. Each such counter fits in O(log∆) bits. By our choice of k, the

total space bound for these counters is O(n log∆). Moving on, identifying h⋆ requires keeping

track of
√
|H| accumulators, to evaluate sums of the form given in line 13, in each of passes 2

and 3. These accumulators do not need to be stored at full precision; a relative error of (1 + ε)

is acceptable, so O(log n
ε) = O(log n) bits per accumulator suffice. Since p = Θ(n/ε) = Θ(n log n)

and |H| = p2 (line 11), the total space cost of all the accumulators is O(
√
|H| log n) = O(n(log n)2)

bits.

Next, we consider the end-of-epoch pass. By Lemma 4.6.8, |F | ≤ |U | = O(n) so this pass needs

only O(n log n) bits to collect the edges in F . The rest of its computations happen offline and need

no further storage. This completes the space complexity analysis.

Finally, we account for the number of passes. In epoch r, there are ⌈b/kr⌉ stages, where kr is the
value of k for the epoch; each such stage makes three streaming passes; additionally, there is one

end-of-epoch pass. There is also one final pass after all epochs are done (line 6). By Lemma 4.6.9,

each epoch shrinks |U | to at most α = 2/3 times its previous value. Notice that the epochs stop

once |U | ≤ n/∆, so there are at most
⌈
log1/α∆

⌉
epochs. Furthermore, at the start of the rth epoch,

|U | ≤ αr−1n, implying kr ≥ 1 +
⌊
(r − 1) logα−1

⌋
for this epoch, which in turn upper-bounds the

number of stages of the epoch. Putting it all together, the total number of streaming passes, across

all epochs, is

1 +

⌈log1/α ∆⌉∑
r=1

(
3

⌈
b

kr

⌉
+ 1

)
= O(log∆) +O(b) ·

⌈log1/α ∆⌉∑
r=1

1

kr

= O(log∆) ·
⌈log1/α ∆⌉∑

r=1

1

r

= O(log∆ · log log∆) .

149

This concludes the proof of our first major algorithmic result, which we now recap.

Theorem 4.6.11. There is an efficient deterministic semi-streaming algorithm to (∆ + 1)-color

an n-vertex graph, given a stream of its edges. The algorithm uses O(n(log n)2) bits of space and

runs in O(log∆ log log∆) passes.

4.6.5 Extending to list coloring

We can extend Algorithm 4.6.1 to handle the more general problem of (deg+1)-list-coloring. This

will require a careful refinement of some of the low-level details of the previous algorithm.

The main problem that we face for (deg+1)-list-coloring is that the set of all possible colors

that vertices might use can now be much larger than ∆. If all vertices have disjoint color lists, then

there may be Θ(n∆) colors in use. To work around this issue, instead of using a fixed partition

refinement scheme, we choose the color partitions as a function of the color lists. Fortunately, it

suffices to derive the color partitions from a small, almost universal family of hash functions. The

following lemmas give such families.

Definition 4.6.12. A family H of hash functions A → B is δ-almost universal if for all distinct

a1, a2 ∈ A, Pr
h∈RH

[h(a1) = h(a2)] ≤ δ .

Lemma 4.6.13. For finite sets A,B, there is a 3/|B|-almost universal hash family H of

functions A → B, of size |H| = t = O((|B| log |A|)2), wherein each function is computable in

poly(log(|A|, log |B|) time.

Proof of Lemma 4.6.13. Let α = ⌈log |A|/ log |B|⌉, and let q be a prime between |B|α and 2|B|α;
such a prime is guaranteed to exist by Bertrand’s postulate. Note q = O(|B| log |A|). We will

construct a 3/|B|-almost-universal hash family by composing a hash family from A (viewed as a

subset of Zα
q) to [q] with a hash family from [q] to Z|B| ∼= B. For the first family, we use the hash

functions derived from the Reed-Solomon codes via the equivalence between hash functions and

codes [Sti96]; for the second, we use the standard multiplicative family. Thus, we obtain a family

H of q2 functions from Zα
q to Z|B|, defined as:

H :=

{
(x1, . . . , xα) 7→

(
a

α∑
i=1

xib
i−1 mod q

)
mod |B| : a ∈ Zq, b ∈ Zq

}
.

To prove that this is a 3/|B|-almost universal family, we observe that given distinct vectors

(x1, . . . , xα) and (y1, . . . , yα),

Pr
h∈RH

[h(x1, . . . , xα) = h(y1, . . . , yα)] ≤ Pr
h∈RH

[
α∑

i=1

xib
i ≡

α∑
i=1

yib
i (mod q)

]

150

+ Pr
[
(ax̃ mod q) ̸≡ (aỹ mod q) (mod |B|)

∣∣x̃ ̸= ỹ
]
,

where x̃ =
∑α

i=1 xib
i mod q, and ỹ is likewise defined. By a standard proof (see e.g. [ACS22,

Lemma 5.1]), the second probability is ≤ 2
|B| . On the other hand, using the fundamental theorem

of algebra,

Pr
b∈Zq

[
α∑

i=1

(xi − yi)bi−1 mod q = 0

]
=
α− 1

q
≤ 1

|B|
,

and thus

Pr
h∈RH

[h(x1, . . . , xα) = h(y1, . . . , yα)] ≤
1

|B|
+

2

|B|
≤ 3

|B|
.

As they only require multiplications, additions, and remainders, the functions in H can be com-

puted in O(α(log q)2) = O((1 + log |A|
log |B|)(log |B| log log |A|)

2) time. (Note: identifying the prime

q deterministically by testing integers in the candidate interval for primarily may use up to

O(q polylog q) time, but if e.g. Cramer’s conjecture holds and prime gaps are small, then only

O(polylog q) time would be needed to find q.)

While it is theoretically possible to use a significantly smaller hash function family, we haven’t

yet found an explicit construction for this.

Lemma 4.6.14. For finite sets A,B, there exists a 3/|B|-almost universal hash family H of func-

tions A→ B, of size |H| = O(|B| log |A|).

Proof of Lemma 4.6.14. Say that each function in H is chosen uniformly and independently at

random from the set of all functions from A to B. It suffices to prove that H fails to be 3/|B|-
almost universal with probability < 1. Let |H| = ⌈8|B| log |A|⌉ and behold:

Pr
H

[
∃x, y : Pr

h∈RH
[h(x) = h(y)] ≥ 3/|B|

]
≤

∑
{x,y}∈(A2)

Pr
H

[
Pr

h∈RH
[h(x) = h(y)] ≥ 3/|B|

]

=
∑

{x,y}∈(A2)

Pr
H

[∑
h∈H

1h(x)=h(y) ≥ 3E[
∑
h∈H

1h(x)=h(y)]

]

≤
∑

{x,y}∈(A2)

(e2/9)E[
∑

h∈H 1h(x)=h(y)] =
∑

{x,y}∈(A2)

(e2/9)|H|/|B| by Chernoff bound

< |A|22−|H|/(4|B|) ≤ 1 .

151

Theorem 4.6.15. Let C be a set of colors. There is a deterministic semi-streaming algorithm for

(degree+ 1)-list-coloring a graph G given a stream consisting of, in any order, the edges of G, and

(x, c) pairs specifying that the color c ∈ C is allowed for the vertex x. We assume no (vertex,color)

pair is repeated, and that the list Lx of colors that vertex x receives has length deg(x) + 1. The

algorithm uses O(n(log n)2(log |C|)2) bits of space and runs in O(log∆ log log∆) passes.

Here is a technical lemma that is key to the proof of the above.

Lemma 4.6.16. Let s ≥ 3, and let C be a set. There exists a family F of O(s2(log |C|)2) partitions
of C so that, for every collection L1, . . . , Lt of subsets of C:

1

|F|
∑
R∈F

∑
i∈[t]

max
S∈R

(|Li ∩ S| − 1) ≤
√

3

s

∑
i∈[t]

(|Li| − 1) , (4.15)

In particular, there must exist Q ∈ F where
∑

i∈[t]maxS∈Q(|Li ∩S| − 1) is less than the right hand

side.

Proof of Lemma 4.6.16. Let H be a 3/s-almost universal hash family C → [s], which has size

|H| = O(s2(log |C|)2). (For example, from Lemma 4.6.13.) Let h be a randomly chosen element

of H, and let R = {R1, . . . , Rs} be the random partition for which Ri = {x ∈ C : h(x) = i}.
Consider the function f(x) = x(x + 1)/2 defined on [0,∞); because it is convex and increasing

on [0,∞), f−1(x) =
√

2x+ 1/4 − 1/2 is concave and increasing on [0,∞). Because for all z ≥ 1,

z − 1 = f−1(
(
z
2

)
), we have for any i ∈ [t] that:

max
j∈[s]

(|Li ∩Rj | − 1) ≤ f−1

(
max
j∈[s]

(
Li ∩Rj

2

))
≤ f−1

∑
j∈[s]

(
Li ∩Rj

2

) .

Taking expectations and using the concavity of f to apply Jensen’s inequality:

Emax
j∈[s]

(|Li ∩Rj | − 1) ≤ Ef−1

∑
j∈[s]

(
Li ∩Rj

2

) ≤ f−1

E
∑
j∈[s]

(
Li ∩Rj

2

) .

Expressing the sum under the inverse function in terms of h lets us apply the almost-universality

of the hash family:

E
∑
j∈[s]

(
Li ∩Rj

2

)
= E

∑
x,y∈Li:x ̸=y

1h(x)=h(y) =
∑

x,y∈Li:x ̸=y

Pr[h(x) = h(y)] ≤
(
|Li|
2

)
3

s
.

We briefly detour to prove an inequality for f , holding for all z ≥ 1:

f

(√
3

s
(z − 1)

)
=

√
3
s (z − 1) · (

√
3
s (z − 1) + 1)

2
=

3

s

(z − 1)(z +
√

s
3 − 1)

2
≥ 3

s

(
z

2

)
,

152

which implies f−1(3s
(
z
2

)
) ≤

√
3
s (z − 1). Thus:

Emax
j∈[s]

(|Li ∩Rj | − 1) ≤ f−1

((
|Li|
2

)
3

s

)
≤
√

3

s
(|Li| − 1) .

By linearity of expectation, it follows

E
∑
i∈[t]

max
j∈[s]

(|Li ∩Rj | − 1) ≤
√

3

s

∑
i∈[t]

(|Li| − 1) .

This is equivalent to Eq. 4.15, if we let F be the set of possible values of R.

Proof of Theorem 4.6.15. There are two main changes to the algorithm in Theorem 4.6.11. First,

because the color lists Lx are no longer fixed, computing slack(x | Px ∩ Q) for each x ∈ U and

Q ∈ Q(i) requires counting both |{y ∈ N(x) \ U : χ(x) ∈ (Px ∩Q)}| as before, and |(Px ∩Q) ∩ Lx|.
As both quantities are integers in {0, . . . ,∆+ 1}, and can be computed by incrementing counters

each time an edge or (vertex, colors) pair arrives, the total space usage from this stage is still

O(|U |2k log∆).

The other change is that we now adaptively pick the sequence of partitions Q(1), . . . ,Q(ℓ), and

use more stages. Instead of setting k = 1+
⌊
log n

|U |

⌋
, we set k = 1+

⌊
1
3 log

n
|U |

⌋
. Also, the number of

stages ℓ used will, instead of ⌈log(∆ + 1)⌉, be ℓ = ⌈2b/k⌉+1 instead. For the first ⌈2b/k⌉ stages, we
adaptively pick partitions from the family of Lemma 4.6.16 over the set C with s = 2k+2 parts. The

resulting partitions use O(ℓ log s log log |C|) = O((log∆)2 log log |C|) space to store in total. Because

there are only O(s2(logC)2) candidate partitions, we can find the best partition from Lemma 4.6.16

in a single pass over the stream. We use an array of integer counters (aR,j,x)R∈F ,j∈[s],x∈U , each

initialized to zero. Let Rj be the jth partition in R. The counter aR,j,x records the number of

(vertex, color) pairs (x, c) in the stream for which c ∈ Rj ∩ Px. Because we are promised that no

(vertex, color) pairs are repeated, at the end of the pass aR,j,x = |(Px ∩ Rj) ∩ Lx|. We will then

choose Q(i) to be the partition R ∈ F which minimizes the quantity
∑

x∈U minj∈[s] aR,j,x. The

total additional space needed to perform this pass is:

O(|F|s|U | log∆) = O(s3|U | log∆(log |C|)2) = O(n log∆(log |C|)2) .

since s = O((n/|U |)1/3.
At the start of the first stage, since all |Lx| ≤ ∆ + 1, we have

∑
x∈U (|Lx ∩ Px| − 1) ≤ ∆|U |.

153

Letting jx be the index of Px,j = Px ∩Q(i)
j chosen to succeed Px, we have (due to Lemma 4.6.16).

∑
x∈U

(|Lx ∩ Px,jx | − 1) ≤
∑
x∈U

max
j∈[s]

(|Lx ∩ Px ∩Q(i)
j | − 1) ≤

√
3

s

∑
x∈U

(|Lx ∩ Px| − 1)

Each stage scales
∑

x∈U (|Lx ∩ Px| − 1) by a factor which is ≤ 3
s < 2−k/2, so after ℓ − 1 =

⌈2 log(∆ + 1)/k⌉ stages, we have

∑
x∈U

(|Lx ∩ Px| − 1) ≤ ∆|U |2−k/2·⌈2 log(∆+1)/k⌉ ≤ ∆

∆+ 1
|U | ≤ |U |

In the last stage, we set Q = {{x} : x ∈ C}, where C =
⋃

x∈U Lx. Unlike the other stages, where

|Q| ≤ 2k+2, we need to run an additional pass to record, for each x ∈ U , the values of |Lx ∩ Px|.
This requires only O(|U | log |C|) bits. In the following pass to compute slack(x | Px ∩ Q) for each

x ∈ U and Q ∈ Q, we use the fact that slack(x | Px∩Q) will only be one if Q ⊆ Px∩Lx and there is

no y ∈ N(x)\U satisfying χ(y) ∈ Q to save space; instead of tracking sums for every (x,Q) ∈ U×C
combination, we store a {0, 1} value for each (x,Q) ∈ ⊔x∈U{(x, {q}) : q ∈ Lx ∩ Px} which is

initialized to 1 and set to 0 if the stream contains an edge to a neighboring y ∈ [n] \ U with color

in Q. After this stage, the condition |Lx| ≤ 1 holds, as required for the proof of Theorem 4.6.11 to

work.

Despite the less efficient partitioning scheme, the algorithm still uses roughly the same amount

of space; for all but the last stage, it uses only a constant factor more counters (2k+2|U | in total).

The last stage requires one bit for each element in a list Lx – but since
∑

x∈U (|Lx| − 1) ≤ |U |, we
have

∑
x∈U |Lx| ≤ 2|U |, which implies only 2|U | bits are needed. Due to the additional pass per

stage and the increased number of stages per epoch, the algorithm will use about eight times more

passes than in Theorem 4.6.11. The precision of the estimates in the passes finding h⋆ will need to

be improved accordingly, but we will still have ε = Ω(1/ log n).

Storing the per vertex partitions Px requires only ℓ(k + 2) + log(|C|) = O(log |C|) bits, each, at
a given point in the algorithm. As in the original algorithm, each partition Px can be determined

using the sequence of sets from Q(1), . . . ,Q(ℓ) that contain it.

The analysis to prove that the potential does not increase by much requires almost no adjust-

ment.

4.7 Slightly improved deterministic lower bound

In this section, we describe a few changes which strengthen the result of [ACS22, Theorem 1], to

obtain:

Corollary 4.7.1. [Modification of [ACS22], Theorem 1] For any integer L ≥ 8 log n ln(2n), a

154

deterministic algorithm which maintains an n/2-coloring (or better) of a graph edge insertion stream

of maximum degree ≤ L requires space:

≥ nL

16 ln 2(log n)2
. (4.16)

For sake of completeness, we present a proof of Corollary 4.7.1 below; it largely repeats that

of [ACS22, Theorem 1], using slightly different notation. The main change is an improvement to

the lower bound applied once the graph Gk+1 has been found, in which we send the edges in Gk+1

to the algorithm before asking the algorithm for a coloring; compare [ACS22, Lemma 4.13], which

immediately evaluates the number of colors used by the algorithm. It will rely on the following

lemma.

Lemma 4.7.2 (Paraphrased from [ACS22, Lemma 4.3]). Let G = (V,E) be an n-vertex graph,

s ≥ 1 an integer, p ∈ (0, 1), and d a real value which is ≥ the maximum degree of a vertex in G,

and which also satisifes d ≥ 4 ln(2n)/p. Let HG,2pd be the set of subgraphs of G of maximum degree

< 2pd. Let Ψ map HG,2pd to {0, 1}s, and define Emiss(Ψ, ϕ) := {e ∈ G : ∀H ∈ HG,2pd, e /∈ H}.
Then there exists ψ⋆ ∈ {0, 1}s for which

|Emiss(Ψ, ϕ)| ≤
1

p
(s+ 1) ln 2

Proof of Corollary 4.7.1. Say that L ≥ 8 log n ln(2n), and that deterministic graph coloring al-

gorithm A uses ≤ n/2 colors and s bits of space, and assume for sake of contradiction that

s ≤ nL
16 ln 2(logn)2

. Identify all of A’s states with unique strings in {0, 1}s. The first deviation from the

proof of [ACS22, Theorem 1] is a slightly different choice of parameters. Define k =
⌊
log 2n logn

L

⌋
,

and for each i ∈ [k], set:

di =
2n

2i
and pi =

L

4n log n
2i .

(This ensures dipi =
L

2 logn ≥ 4 ln(2n). Since i ∈ [k], we also have pi ≤ L
4n logn

2n logn
L ≤ 1

2 .)

We will iteratively construct a family of inputs on which A must (if it is to be correct) use

> n/2 colors. Let V1 = V , let G1 be the clique on V1, and let σ1 be the initial state of A. For

i = 1, . . . , k, we will choose:

• a collection Fi of subgraphs of Gi, each of maximum degree < 2pidi

• a set of vertices Vi+1 ⊆ Vi, satisfying |Vi+1| ≥ n− i n
4k

• a graph Gi+1 on Vi+1, of maximum degree ≤ di+1, containing precisely the edges between

vertices of Vi+1 which are in Gi but not in any F ∈ Fi

155

• a state σi+1 of the algorithm, reachable from σ1 by a graph stream formed from any sequence

(F1, . . . , Fi+1) ∈ F1 × . . .×Fi

Since |V1| = n, and d1 = n, the maximum degree of G1 is ≤ d1; we also have that σ1 is reachable

from σ1 by the empty graph stream. Thus, these conditions hold trivially for G1, V1, σ1.

For each i = 1, . . . , k, define the set of graphs Hi of subgraphs of Gi of maximum degree

< 2pidi; this matches the definition of HGi,2pidi from Lemma 4.7.2. Since the maximum degree of

Gi is ≤ di, and pi ∈ (0, 1), and 2pidi ≥ 4 ln(2n), the preconditions of Lemma 4.7.2 are satisfied.

Define Φi : Hi → {0, 1}s to map each subgraph H in Hi to the state of the algorithm A that will

result if, starting from state σi, the algorithm processes the edges of H in some canonical order.

Then, applying Lemma 4.7.2, there exists a σi+1 ∈ {0, 1}s for which

|Emiss(Φi, σi+1)| ≤
1

pi
(s+ 1) ln 2 . (4.17)

Define Fi = Φ−1
i (σi+1), so that Emiss(Φi, σi+1) = Gi \

⋃
F∈Fi

F . Define Vi+1 ⊆ Vi to be the set of

vertices with degree ≤ di+1 in Emiss(Φi, σi+1), and define Gi+1 to be the graph on Vi+1 formed by

edges from Emiss(Φi, σi+1). Then all vertices in Vi \Vi+1 have degree > di+1 in Emiss(Φi, σi+1), so:

|Emiss(Φi, σi+1)| ≥
1

2
di+1|Vi \ Vi+1| . (4.18)

Combining Eqs. 4.17 and 4.18 implies12

|Vi \ Vi+1| ≤
(s+ 1)2 ln 2

pidi+1
≤ s · 4 ln 2

pidi+1

≤ nL

16 ln 2(log n)2
(4 ln 2)

log n

L
≤ n

4 log n
≤ n

4k
.

Thus |Vi+1| ≥ |Vi| − |Vi \ Vi+1| ≥ n− (i− 1) n
4k .

We observe that the state σk+1 is reachable from σ1 by adding edges from any sequence

(F1, . . . , Fk) ∈ F1× . . .×Fk; the graphs in each such sequence are edge disjoint and each have max-

imum degree ≤ L
2 logn ≤

L
2k . Consequently, each union

⋃
i∈[k] Fi will have maximum degree ≤ L/2.

Every edge between vertices in Vk+1 which is not in Gk+1 could possibly have been included by a

graph in one of the F1, . . . ,Fk.

The second deviation from the proof of [ACS22, Theorem 1] is the following. Consider the state

σ⋆ which A will reach, starting from state σk+1, after sending every edge in Gk+1 to the algorithm.

Since the maximum degree of Gk+1 is dk+1 ≤ 2n
2k+1 ≤ 8nL

2n logn ≤ L/2, every graph formed by the

union of a sequence (F1, . . . , Fk, Gk+1) with (F1, . . . , Fk) ∈ F1× . . .×Fk will have maximum degree

≤ L. The algorithm A is required, on σ⋆, to produce a valid coloring for each such graph; but it

12Applying the upper bound on s here, immediately, is another change from the proof of [ACS22, Theorem 1].

156

cannot color any two vertices in Vk+1 the same, because there might have been an edge between

the two. Consequently, it must use ≥ |Vk+1| ≥ 3n/4 > n/2 distinct colors. This contradicts the

requirement that A use only ≤ n/2 colors, so our initial assumption that s ≤ nL
16 ln 2(logn)2

must

have been wrong.

4.8 Conclusion

This chapter proved a Ω̃(∆2) color lower bound for adversarially robust streaming algorithms for

graph coloring using semi-streaming space; described robust semi-streaming algorithms for O(∆3)

and O(∆2.5) coloring, and described a deterministic semi-streaming algorithm for ∆ + 1 coloring

using O(log∆ log log∆) passes over the stream.

We have not addressed the more general case of dynamic graph streams, in which each stream

element corresponds to an action to either add or delete an edge. In general, the robust algorithms

we present can easily be adapted to work in this setting, because unlike edge insertions, edge

deletions do not require that the algorithm change its output coloring. The two main changes

necessary are to add logic to remove deleted edges from the algorithms’ buffers (but not reduce

degree counters), and to adjust algorithm parameters as necessary to account for the fact that the

stream length can now be longer than m. See the ArXiv version of [CGS22] for a design specifically

tuned for dynamic graph streams.

We note that some of our results may be extendable to O(κc) coloring, where c ≥ 1 and κ is

the maximum degeneracy of the input. The lower bound Theorem 4.3.3 of course translates, since

a graph with maximum degree ∆ will have degeneracy κ ≤ ∆ . The O(∆3)-coloring algorithm

Theorem 4.4.1 may be easily adaptable – it should suffice to replace ∆ with κ in the algorithm, and

double the number of epochs to account for the fact that the graph stream will have ≤ κn edges

in total, instead of ≤ n∆/2.
It is not fully clear why the color gap between robust upper and lower bounds remains. Graph

coloring is more complicated than just running many instances of algorithms for MissingItem-

Finding from Chapter 3 in parallel. To maintain a graph coloring, for each vertex v in the graph,

we must not just pick a color that avoids the colors of its neighbors at the time the edges to them

were added, but ensure that whenever one of the neighbors’ colors changes, v’s color is still not

equal any of them. It may be that this coordination requirement – that vertices’ colors maintain the

graph coloring invariant, when their neighbors are updated – is the barrier that has made finding a

robust semi-streaming O(∆2)-coloring algorithm so difficult, and which requires Algorithm 4.5.1’s

different approaches to handling vertices with quickly changing and slowly changing neighborhoods.

We leave the task of finding a robust O(∆2)-coloring algorithm in semi-streaming space as an open

157

question.

158

Chapter 5

Streaming algorithms for online edge

coloring

5.1 Introduction

A proper edge-coloring of a graph or a multigraph colors its edges such that no two adjacent edges

share the same color. The goal is to use as few colors as possible. Any graph with maximum vertex-

degree ∆ trivially requires ∆ colors to be properly edge-colored. A celebrated theorem of Vizing

[Viz64] says that ∆ + 1 colors suffice for any simple graph.1 There are constructive polynomial

time algorithms that achieve a (∆ + 1)-edge-coloring in the classical offline setting [MG92]. These

algorithms are likely to be optimal with respect to the number of colors: distinguishing between

whether the edge-chromatic number (i.e., the minimum number of colors needed to edge-color a

graph) of a simple graph is ∆ or ∆ + 1 is NP-hard [Hol81].

The edge-coloring problem has several practical applications, including in switch routing

[AMSZ03], round-robin tournament scheduling [JURdW16], call scheduling [EJ01], optical net-

works [RU94], and link scheduling in sensor networks [GDP05]. In many of these applications,

such as in switch routing, the underlying graph is built gradually by a sequence of edge insertions

and the color assignments need to be done instantly and irrevocably. This is modeled by the online

edge coloring problem. Due to its restrictions, an online algorithm cannot obtain a (∆+1)-coloring

[BMN92]. Consider, however, the simple greedy algorithm that colors every edge with the first

available color that is not already assigned to any of its neighbors. Since each edge can have at

most 2∆ − 2 adjacent edges, this algorithm achieves a (2∆ − 1)-coloring, i.e., a competitive ratio

of 2 − o(1) (since the optimum is ∆ or ∆ + 1). Bar-Noy, Motwani, and Naor [BMN92] showed

that no online algorithm can perform better than this greedy algorithm. However, they proved

this only for graphs with max-degree ∆ = O(log n). They conjectured that for ∆ = ω(log n), it is

1For multigraphs, 3∆/2 colors are sufficient and on some multigraphs necessary [Sha49].

159

possible to get better bounds, and that, in particular, a (1 + o(1))∆-coloring is possible. Several

works [AMSZ03, BMM12, CPW19, BGW21, SW21, KLS+22, NSW23] have studied online edge

coloring with the aim of beating the greedy algorithm and/or resolving the said conjecture. Other

variants of the problem have also been studied [FN03, Mik16, FM18]. However, all prior works

assume that all graph edges are always stored in the memory along with their colors.

With the ubiquity of big data in the modern world, this assumption often seems fallacious.

The graphs that motivate the study of edge coloring, such as communication and internet routing

networks, turn out to be large-scale or massive graphs in today’s world, making it expensive for

servers to store them entirely in their memory. This has led to big graph processing models such as

graph streaming that, similar to the online model, have sequential access to the graph edges, but

can only store a small summary of the input graph so as to solve a problem related to it. There is

an immediate barrier for the edge coloring problem in this setting: the output size is as large as

the input, and hence an algorithm must use space linear in the input size to present the output as

a whole. To remedy this, one can consider the natural extension of the model where the output is

also reported in streaming fashion: in the context of edge coloring, think of the algorithm having a

limited working memory to store information about both the input graph and the output coloring;

it periodically streams or announces the edge colors before deleting them from its memory. This

is the so called W-streaming model. Unlike the online model, here we don’t need to assign a color

to the incoming edge right away, and can defer it to some later time. However, due to the space

restriction, we are not able to remember all the previously announced colors. Note that this makes

even the greedy (2∆−1)-coloring algorithm hard (or maybe impossible) to implement in this model.

In this chapter, we aim to get the best of both worlds of the online and the streaming models:

the goal is to design streaming online algorithms for edge coloring, using significantly less space than

the Õ(n∆) bits needed to store all the edges in a graph of maximum degree ∆. This is motivated by

modern practical scenarios that demand immediate color assignment as well as space optimization.

We succeed in designing such algorithms and at the same time, the quality of our algorithms is

close to optimal: we achieve an O(1)-competitive ratio, i.e., a color bound of O(∆). Note that

no prior work studying edge-coloring in the sublinear-space setting could attain an O(∆)-coloring

W-streaming algorithm, let alone online. For adversarial edge-arrival streams, we get an online

O(∆)-coloring in O(n
√
∆) space, significantly reducing the space used by prior online algorithms

at the cost of only a constant factor in the number of colors. We can smoothly tradeoff space

with colors to get an O(∆t)-coloring in Õ(n
√
∆/t) space. This improves upon the state of the art

[CL21, ASZZ22] which obtained the same color bound using Õ(n∆/t) space. Furthermore, for the

natural and well-studied settings of vertex-arrival in general graphs and one-sided vertex arrival in

bipartite graphs, we can improve the space usage to O(n polylog n), i.e., semi-streaming, which is

the most popular memory regime for graph streaming problems. Most of our algorithms generalize

160

to multigraphs and can be made deterministic.

5.1.1 Results

We study edge-coloring in the online model with sublinear (i.e., o(n∆)) memory as well as in the W-

streaming model and improve upon the state of the art. These results are summarized in Table 5.1

and Table 5.2. They also mention the state of the art, for comparison.

Arrival Algorithm Colors Space Graph Reference

Edge Randomized
(

e
e−1 + o(1)

)
∆ Õ(n∆) Simple [KLS+22]

Edge Randomized O(∆) Õ(n
√
∆) Simple Theorem 5.5.4

Edge Deterministic (2∆− 1)t O(n∆/t) Multigraph [ASZZ22]

Edge Deterministic Õ(∆t) Õ(n
√
∆/t)⋆ Multigraph Theorem 5.5.8

Vertex Randomized (1.9 + o(1))∆ Õ(n∆) Simple [SW21]

Vertex Randomized O(∆) Õ(n)⋆ Multigraph Theorem 5.4.3

Vertex Deterministic 2∆− 1 O(n∆) Multigraph Greedy folklore

Vertex Deterministic O(∆) Õ(n)⋆ Multigraph Theorem 5.4.7

One-sided vertex Randomized (1 + o(1))∆ Õ(n∆) Simple [CPW19]

One-sided vertex Randomized 1.533∆ Õ(n∆) Multigraph [NSW23]

One-sided vertex Randomized 5∆ Õ(n)⋆ Multigraph Lemma 5.4.1

One-sided vertex Deterministic 2∆− 1 O(n∆) Multigraph Greedy folklore

One-sided vertex Deterministic O(∆) Õ(n)⋆ Multigraph Lemma 5.4.6

Table 5.1: Our results in the online model. Here, t = O(∆) is any positive integer. Algorithms
marked with a ⋆ require oracle randomness for randomized algorithms and exponential preprocess-
ing time for deterministic.

Algorithm Colors Space Graph Reference

Randomized O(∆2/s) Õ(ns) Simple [CL21]

Randomized O(∆2/s) Õ(n
√
s) Simple Corollary 5.1.1

Randomized O(∆2/s) Õ(n
√
s)⋆ Multigraph Theorem 5.5.3

Deterministic (1− o(1))∆2/s O(ns) Simple [ASZZ22]

Deterministic Õ(∆2/s) Õ(n
√
s)⋆ Multigraph Corollary 5.1.2

Table 5.2: Our results in the W-streaming model. Here, s ≤ ∆/2 is any positive integer. Results
marked with ⋆ require oracle randomness for randomized algorithms and exponential preprocessing
time for deterministic.

We consider the problem under (adversarial) edge-arrivals as well as vertex-arrivals. We give

an account of our results in each of these models below.

Edge-arrival model. Here we design both online and W-streaming algorithms.

161

Theorem 5.5.4. Given any adversarial edge-arrival stream of a simple graph, there is a randomized

algorithm for online O(∆)-edge-coloring using O(n
√
∆ log n) bits of space and Õ(n

√
∆) oracle

random bits.

Previously, there was no sublinear space online algorithm known for O(∆)-coloring. As observed

in Table 5.1, all prior algorithms use Ω(n∆) space in the worst case to achieve a color bound of

O(∆).

Note that Theorem 5.5.4 immediately implies a randomized W-streaming algorithm with the

same space and color bounds. Although immediate, we believe that it is important to note it as a

corollary.

Corollary 5.1.1. Given an adversarially ordered edge stream of any simple graph, there is a

randomized W-streaming algorithm for O(∆)-edge-coloring using Õ(n
√
∆) bits of space.

The above result improves upon the state of the art algorithms of [CL21, ASZZ22] which, as

implied by Table 5.2, only obtain ω(∆)-colorings for o(n∆) space (the non-trivial memory regime

in W-streaming). In fact, we improve upon them by a factor of Ω(
√
∆) in space for O(∆)-coloring.

We show that the above W-streaming algorithm can be made to work for multigraphs and

against adaptive adversaries at the cost of Õ(n∆) bits of oracle randomness.

Theorem 5.5.3. There is a randomized W-streaming algorithm for O(∆) edge coloring on edge

arrival streams for multigraphs which uses O(n
√
∆(log(n∆))2) bits of space, with error ≤ 1/ poly(n)

against any adaptive adversary. The algorithm also requires Õ(n∆) bits of oracle randomness.

Further, we prove that we can make the above algorithms deterministic at the cost of only

a polylogarithmic factor in space. Once again, the online algorithm immediately implies a W-

streaming algorithm.

Theorem 5.5.8. There is a deterministic algorithm for online O(∆(log∆)2) edge coloring in edge

arrival streams for multigraphs, using O(n
√
∆(log n)2.5(log∆)3) bits of space, and an advice string

of Õ(n
√
∆) bits, which works for all inputs. (By picking a uniformly random advice string, the

same algorithm can alternatively be used as a robust algorithm with 1/ poly(n) error; the advice can

also be verified and computed in exponential time.)

Corollary 5.1.2. Given an adversarially ordered edge stream of any multigraph, there is a deter-

ministic W-streaming algorithm for O(∆(log2∆))-edge-coloring using Õ(n
√
∆) bits of space.

Furthermore, in each case, we can achieve a smooth tradeoff between the number of colors and

the memory used. This is implied by a framework captured in the following lemma.

162

Lemma 5.3.5. Let f, g be functions from N 7→ N. Given a streaming algorithm A for g(∆)-

coloring over edge arrival streams on multigraphs of max degree ∆, using f(N,∆) bits of space,

for any positive integer s, there is a streaming algorithm B for (g(s∆) + s∆)-coloring edge arrival

streams for multigraphs of max degree ∆, using f(N/s, s∆) +O(n log∆) bits of space.

For the online model, the above lemma combined with Theorem 5.5.8 immediately gives the

tradeoff of Õ(∆t) colors and Õ(n
√
∆/t) space for any t = O(∆), as claimed in Table 5.1. In other

words, combined with Corollary 5.1.1, it implies the W-streaming bounds of O(∆2/s) colors and

O(n
√
s) space for any s = O(∆), as claimed in Table 5.2. Note that our results match the tradeoff

obtained by the state of the art for t = Θ(∆) and s = O(1), and strictly improve upon them for

t = o(∆) and s = ω(1).

Vertex-Arrival Model. We now turn to the weaker vertex-arrival model. The online edge-

coloring problem has been widely studied in this setting as well (see Section 5.1.2 for a detailed

discussion). Our online algorithms obtain significantly better space bounds than in the edge-arrival

setting.

Theorem 5.4.3. There is a randomized online O(∆)-edge coloring algorithm for vertex arrival

streams over multigraphs using O(n log(n∆/δ)) bits of space, with error ≤ δ against any adaptive

adversary. It uses O(n∆ log∆) oracle random bits.

Thus, at the cost of only a constant factor in the number of colors, we can improve the memory

usage from Õ(n∆) to Õ(n) for vertex-arrival streams. Since this algorithm immediately implies a W-

streaming algorithm with the same bounds, we see that for vertex-arrival streams, O(∆)-coloring

can be achieved in semi-streaming space, the most popular space regime for graph streaming.

Behnezhad et al. [BDH+19] mentioned that “a major open question is whether [the number of

colors for W-streaming edge-coloring] can be improved to O(∆) while also keeping the memory

near-linear in n.” Our results answer the question in the affirmative for vertex-arrival streams,

which is a widely studied model in the streaming literature as well.

Further, we show that the algorithm can be made deterministic using Õ(n) bits of advice

instead of Õ(n∆) bits of oracle randomness. By picking a uniformly random advice string, the

same algorithm can alternatively be used as a robust algorithm with 1/ poly(n) error; the advice

can also be computed in exponential time.

Theorem 5.4.7. There is a deterministic online O(∆)-edge coloring algorithm for vertex arrival

streams over multigraphs using O(n log(n∆)) bits of space, using an advice string of length Õ(n),

which works for all inputs. (By picking a uniformly random advice string, the same algorithm can

alternatively be used as a robust algorithm with 1/ poly(n) error; the advice can also be computed

in exponential time.)

163

An interesting special case of the vertex-arrival model is the one-sided vertex-arrival setting

for bipartite graphs. Here, the vertices on one side of the bipartite graph are fixed, while the

vertices on the other side arrive in a sequence along with their incident edges. A couple of works

[CPW19, NSW23] have studied online edge-coloring specifically in this model. We design streaming

online algorithms in this model (see Algorithms 5.4.1 and 5.4.2) and use them as building blocks

for our algorithms in the more general settings of vertex-arrival and edge-arrival. These algorithms

may be of independent interest due to practical applications of the one-sided vertex-arrival model;

moreover, the randomized algorithm in this model uses only 5∆ colors (as opposed to our other

algorithms, where the hidden constant in O(∆) is rather large).

Finally, we present a lower bound on the space requirement of a deterministic online edge-

coloring algorithm.

Theorem 5.6.2. For all β ∈ (1, 2), and integers n,∆ satisfying ∆ ≤ n(2 − β)/(64β), every

deterministic online streaming algorithm for edge-coloring that uses β∆ colors requires Ω((2−β)3n)
bits of space. In particular, (2∆− 1)-edge-coloring requires Ω(n/∆3) space.

To the best of our knowledge, this is the first non-trivial space lower bound proven for an online

edge-coloring algorithm.

An outline of how the several building blocks are put together to obtain the above results is

given in Figure 5.1.

5.1.2 Related work

Online model. The edge-coloring problem has a rich literature in the online model [AMSZ03,

ASZZ22, BMN92, BMM12, BGW21, CPW19, FM18, FN03, Mik15, Mik16, NSW23, KLS+22,

SW21]. The seminal work of Bar-Noy, Motwani, and Naor [BMN92] showed that no online al-

gorithm can do better than the greedy algorithm that obtains a (2∆−1)-coloring by assigning each

edge the first available color that’s not already used by any of its adjacent edges. However, this lower

bound applies only to graphs with ∆ = O(log n). They conjectured that for ∆ = ω(log n), there

exist online (1 + o(1))∆-coloring algorithms. Although this conjecture remains unresolved, there

has been significant progress on it over the years. A number of works [AMSZ03, BMM12, BGW21]

considered the problem under random-order edge arrivals: Aggarwal et al. [AMSZ03] showed that

if ∆ = ω(n2), then a (1+ o(1))∆-coloring is possible. For ∆ = ω(log n) (the bound in the said con-

jecture), Bahmani et al. [BMM12] obtained a 1.26∆-coloring. Bhattacharya et al. [BGW21] then

attained the “best of both worlds” by designing a (1+ o(1))∆-coloring algorithm for ∆ = ω(log n),

resolving the conjecture for random-order arrivals.

More relevant to our work is the setting of adversarial-order edge arrivals. Cohen et al. [CPW19]

were the first to make progress on [BMN92]’s conjecture in this setting: they obtained a (1+o(1))∆-

164

Theorem 5.4.3
Random, online, VA

Theorem 5.5.3
Random, W-Stream, EA

Theorem 5.4.7
Deterministic, online, VA

Theorem 5.5.4
Random, online, EA

Theorem 5.5.8
Deterministic, online, EA

Lemma 5.3.5
Color-space trade-
off for multigraphs

Lemma 5.4.1
(bipartite Theorem 5.4.3)

Lemma 5.3.2
(as Corollaries 5.3.3 and 5.3.4)

general from bipartite

Lemma 5.5.1
one-sided VA to
W-streaming EA

Lemma 5.4.6
(bipartite Theorem 5.4.7)

Lemma 5.4.5, union anti-
concentration, dense case

Lemma 5.4.4, union anticoncen-
tration, large and sparse case

[SS96]
expander codes

Lemma 5.7.1
almost k-wise indep.
permutation family

Lemma 5.5.7, online
partial edge coloring

Lemma 5.5.5
offline edge coloring

[Mor13]
shuffling with

switching network

Theorem 5.6.2
Deterministic lower bound

Lemma 5.6.1
counting graphs satis-
fying color constraints

Figure 5.1: Overview of how the results in this paper fit together. Primary results are in yellow;
main supporting lemmas in gray; and notable external results in blue. EA = edge arrival, VA =
vertex arrival.

coloring for bipartite graphs under one-sided vertex arrivals (i.e., the nodes on one side are fixed, and

the nodes on the other side arrive one by one with all incident edges). Their algorithm assumes a

priori knowledge of the value of ∆. For unknown ∆, they prove that no online algorithm can achieve

better than a (e/(e − 1))∆-coloring, and also complement this result with a (e/(e − 1) + o(1))∆-

coloring algorithm for unknown ∆. For bipartite multigraphs with one-sided vertex arrivals, Naor et

al. [NSW23] very recently prove that 1.533∆ colors suffice, while at least 1.207∆ colors are necessary

even for ∆ = 2. Saberi and Wajc [SW21] showed that it is possible to beat the greedy algorithm

for ∆ = ω(log n) under vertex arrivals in general graphs: they design a (1.9 + o(1))∆-coloring

algorithm. Recently, Kulkarni et al. [KLS+22] made the first progress on the said conjecture in the

general setting of adversarial edge arrivals: they obtained a (e/(e − 1) + o(1))∆-coloring in this

model. Note that the focus of all these works was on resolving [BMN92]’s conjecture without any

space limitations. Our focus is on designing streaming online algorithms while staying within a

165

constant factor of the optimal number of colors. The only prior sublinear-space online edge-coloring

algorithm we know was given by Ansari et al. [ASZZ22]: a (deterministic) online 2∆t-coloring in

O(n∆/t) space for any t ≤ ∆.

A number of works [FN03, EFKM10, FM18] have studied the variant of the problem where given

a fixed number of colors, the goal is to color as many edges as possible. Mikkelsen [Mik15, Mik16]

considered online edge-coloring with limited advice for the future.

W-Streaming model. The W-streaming model [DFR06] is a natural extension of the classical

streaming model for the study of problems where the output size is very large, possibly larger than

our memory. While prior works have considered several graph problems in this model [DFR06,

DEMR10, LS11, GSS22], we are only aware of three papers [BDH+19, CL21, ASZZ22] that have

studied edge-coloring here. Behnezhad et al. [BDH+19] initiated the study of W-streaming edge-

coloring algorithms. They considered the problem for both adversarial-order and random-order

streams: using Õ(n) bits of working memory, they gave an O(∆2)-coloring in the former setting,

and a (2e∆)-coloring in the latter setting. Charikar and Liu [CL21] improved these results: for

adversarial-order streams, for any s = Ω(log n), they gave an O(∆2/s)-coloring algorithm that

uses Õ(ns) space; and for random-order streams, they gave a (1 + o(1))∆-coloring algorithm using

Õ(n) space. Both of the aforementioned algorithms for adversarial-order streams are, however,

randomized. Ansari et al. [ASZZ22] gave simple deterministic algorithms achieving the same bounds

of O(∆2/s) colors and Õ(ns) space. Their algorithm can also be made online at the cost of a factor

of 2 in the number of colors. Note that parameterizing our results in Table 5.2 appropriately, our

algorithms achieve O(∆2/s)-colorings in Õ(n
√
s) space, matching the state of the art for s = O(1),

and strictly improving upon it for s = ω(1).

Concurrent work. In an independent and parallel work, Behnezhad and Saneian [BS23] have

designed a randomized Õ(n
√
∆)-space W-streaming algorithm for O(∆)-edge-coloring for edge-

arrival streams in simple general graphs. This matches our Corollary 5.1.1. Their result generalizes

to give, for any s ∈ [
√
∆], an O(∆1.5/s) coloring algorithm in Õ(ns) space, while we achieve an

O(∆2/s)-coloring in the same space. They also get an O(∆)-edge-coloring algorithm for vertex-

arrival streams using Õ(n) space, similar to our Theorem 5.4.3. Note that some of our edge-arrival

algorithms have the additional strong feature of being online, while it is not clear if their edge-

arrival algorithm can also be implemented in the online setting. In terms of techniques, while both

works have some high level ideas in common, e.g., using random offsets/permutations to keep track

of colors, or designing a one-sided vertex-arrival algorithm first and building on it to obtain the

edge-arrival algorithm, the final algorithms and analyses in the two papers are fairly different.

Another independent work by Chechik, Mukhtar, and Zhang [CMZ23] obtains a random-

166

ized W-streaming algorithm that edge-colors an edge-arrival stream on general multi-graphs using

O(∆1.5 log∆) colors in expectation2, and Õ(n) bits of space in expectation. Unlike us, they make

no claims in the online model.

5.2 Preliminaries

5.2.1 Notation

The notation Õ(x) ignores poly(log(n), log(∆)) factors in x. A ⊔ B gives the disjoint union of A

and B. St is the set of permutations over [t], and for any permutation σ ∈ St and X ⊆ [t], we

denote σ[X] := {σi : i ∈ X}.
If not otherwise stated, n is the number of vertices in a graph G, V the set of vertices (or A⊔B

if the graph is bipartite), E the (multi-)set of edges, and ∆ is the maximum degree of the graph.

Definition 5.2.1. A random permutation σ in Sn is k-wise independent if, for all distinct a1, . . . , ak

in [n], and distinct b1, . . . , bk in [n], we have:

Pr

∧
i∈[k]

{σ(ai) = bi}

 =
1∏

i∈[k](n− i+ 1)
.

A family of permutations is k-wise independent if the random variable for a uniformly randomly

chosen element of that family is k-wise independent.

Per [AL12], while it is not known if there are nontrivial k-wise independent families of permu-

tations for large k and n, one can always construct weighted distributions which have support of

size nO(k) and provide k-wise independence.

A random permutation σ is (ε, k)-wise independent if for all distinct a1, . . . , ak in [n], the

distribution of σ on a1, . . . , ak has total variation distance ≤ ε from uniform. In other words,

1

2

∑
distinct b1, . . . , bk in [n]

∣∣∣∣∣∣Pr
∧
i∈[k]

{σ(ai) = bi}

− 1∏
i∈[k](n− i+ 1)

∣∣∣∣∣∣ ≤ ε .
We say a random permutation is almost k-wise independent when it is (ε, k)-wise independent

for sufficiently small ε.

5.2.2 Models

This chapter will use the following models of presenting edges to an algorithm to be colored. In all

cases, the set of vertices for the graph is known in advance. For general graphs, we call the set of

2While [CMZ23] does not claim this, one can prove their algorithm uses O(∆1.5 log∆) colors with ≥ 1−1/ poly(n)
probability.

167

vertices V ; for bipartite graphs, V is partitioned into two disjoint sets, which we typically call A

and B. Let G be the (multi-) graph formed by taking the union of all edges in the stream.

We assume that the maximum degree ∆ of G is known in advance. An edge-coloring algorithm

for which ∆ is not known in advance can be converted to one which is, although one way to

do this conversion (by running a new 2∆-coloring algorithm with a fresh set of colors whenever

the maximum degree of graph formed by the input stream doubles) increases the total number of

colors used by a constant factor, and requires O(n log∆) bits of space to keep track of the maximum

degree. Since the algorithms in this paper already have large constant factors on number of colors

used, we do not optimize the algorithms for the case where ∆ is not known in advance.

Definition 5.2.2. With an edge arrival stream, the algorithm is given a sequence of edges in

the graph. Each edge is provided as an ordered pair {x, y} of vertices in V . In this paper, online

algorithms processing edge arrival streams will implement a method Process({x, y}) which returns

the color assigned to the edge. For example, see Algorithm 5.2.1, an implementation of the greedy

edge coloring algorithm using O(n∆) bits of space. W-streaming algorithms may assign the color

for an edge at any time, although all edges must be given a color at the end of the stream.

Definition 5.2.3. In a vertex arrival stream, the algorithm is given a sequence of (vertex, edge-set)

pairs (v,Mv), where the edge (multi-) set Mv contains all edges from v to vertices that have been

seen earlier in the stream. Online algorithms should report colors for all edges in Mv when (v,Mv)

is processed.

A one-sided vertex arrival stream on a bipartite graph with parts A,B is like a vertex arrival

stream, if the vertices for one part (B) were all presented first, and then all the (vertex, edge-set)

pairs for the other part (A) are given. For one-sided vertex arrival, we assume that the algorithm

knows parts A and B in advance, and receives the (vertex, edge-set) pairs for B. The stream

consists of pairs (v,Mv), where each v ∈ A, and Mv contains all edges from v to B.

Recall from Chapter 2 that an algorithm is said to be robust if it works with ≥ 1−δ probability
even when its input streams are adaptively generated. By “adaptively generated”, we mean that

the input is produced by an adaptive adversary that sees all outputs of the online (or W-streaming)

algorithm, and repeatedly chooses the next element of the stream based on what the algorithm has

output so far.

5.3 Algorithm transformations/reductions

5.3.1 From bipartite graphs to general graphs

We show that it is essentially enough to consider bipartite graphs. Suppose that we can partition

a general graph into O(log n) bipartite graphs, each of which has max-degree roughly ∆/ log n,

168

Algorithm 5.2.1 A greedy 2∆− 1 online edge-coloring algorithm using O(n∆) bits of space

Input: Stream of edges in an n-vertex graph G = (V,E)

Initialize:
1: for v ∈ V do
2: Uv ← ∅ is a subset of [2∆− 1]

Process(edge {x, y}) → color
3: Let c be arbitrary color in [2∆− 1] \ Ux \ Uy

4: Add c to Ux and to Uy

5: return color c

where ∆ is the max-degree of the original graph. Then, if we run our algorithm on these bipartite

graphs with disjoint palettes, we use colors roughly proportional to ∆. It is known (see [CL21]

or for a similar result, [SW21, Lemma 2.1]) that such a partition can be done in a randomized

way, incurring a multiplicative overhead of just 1 + o(1) in the number of colors. We show that

if we are willing to tolerate an O(1) blowup in the number of colors, then this partition can be

done deterministically. Since such a primitive is used in multiple edge-coloring algorithms, this

deterministic version might be of independent interest. One advantage of this version is that

it works against adaptive adversaries, unlike the randomized version which can be shown to be

breakable by such an adversary.

We construct this partition using appropriate binary codes for the vertices: the codes are of

length O(log n) and we have a bipartite graph corresponding to each bit, where the bipartition is

given by whether the bit is 0 or 1. Now, we need to ensure that (a) every edge goes to “some”

bipartition, and (b) the max-degree of a single bipartite graph is not much higher than ∆/ log n.

This can be done using codes with constant rate and relative distance, like the expander codes

described by [SS96]. Now we can focus on getting O(∆)-colorings for bipartite graphs, which

would give us asymptotically same number of colors for general graphs.

Note that for the vertex-arrival model, we can go one step farther and assume “one-sided”

vertex arrival, i.e., vertices along with their incident edges arrive on only one side of the bipartite

graph. This is because we can run two copies of the algorithm, one each for the vertices arriving

on either side, with disjoint palettes. This incurs only a factor of 2 in the number of colors.

First, we will need the following lemma:

Corollary 5.3.1 (Practical high-rate-distance-product binary codes, via [SS96]). There exists a

constant t0 so that, for all integers t, there exists a binary code of dimension ≥ t, length t′ ≤
64max(t, t0), and distance ≥ 1

400 t
′. The code can be implemented with O(poly(t)) initial setup time

and space, and O(t2) encoding time.

Proof of Corollary 5.3.1. [SS96] Theorem 19 proves that there exists a polynomial-time con-

169

structable family of expander graphs with constant rate and relative distance, but does not prove

a usable guarantee on the lengths of codes in this family. Fortunately, only a bit more work needs

to be done to do this.

Let ε =
√
2/20. By the Gilbert-Varshamov bound, there is a constant c0 so that for all y ≥ c0,

there exists a linear code By of length y, rate ≥ 1 − H(ε) and distance ≥ εy. Let p be a prime

equivalent to 1 (mod 4) for which p > c0 and 2
√
p/(p+ 1) ≤ (1− 1/

√
2)ε. Say q is a prime which

is > p and equivalent to 1 (mod 4). By [LPS88], if p is a quadratic residue of q, then there is an

expander graph Gp,q on (q3 − q)/2 vertex set Vp,q = PSL(2,Z/qZ); and if p is not a quadratic

residue of q, then there is an expander graph Gp,q on the q3 − q vertex set Vp,q = PGL(2,Z/qZ).
In both cases, Gp,q is regular of degree p + 1 and has second eigenvalue ≤ 2

√
p. By [SS96], one

can construct a code C(Bp, Gp,q) which has length (p+ 1)|Vp,q|/2, and by [SS96, Lemma 15], rate

≥ 1− 2H(ε) = 0.2628 . . . ≥ 1/4, and relative distance

≥

 ε− 2
√
p

p+1

1− ε− 2
√
p

p+1

 ≥ ε2

2
≥ 1

400
.

By [Mor93], for any r ≥ 25, there exists at least one prime ≡ 1 (mod 4) in the interval [r, 2r].

Now, let t0 =
⌈
(p+ 1)4/16

⌉
. For all t ≥ t0, let q be the least prime ≡ 1 (mod 4) which is

≥ (16t/(p+ 1))1/3. Then the dimension of the code C(Bp, Gp,q) is

≥ 1

4

(p+ 1)|Vp,q|
2

≥ 1

8
(p+ 1)

q3 − q
2
≥ p+ 1

16
q3 ≥ t .

On the other hand, the length of the code is:

≤ (p+ 1)|Vp,q|
2

≤ 1

2
(p+ 1)(q3 − q) ≤ 1

2
(p+ 1)q3 ≤ 1

2
(p+ 1)

(
2

(
16t

p+ 1

)1/3
)3

≤ 64t .

The expander graph Gp,q is computable in O(poly(p, q)) = O(poly t) time, and the expander

code takes O(t2) time to encode.

Lemma 5.3.2 (Deterministic general-to-bipartite partitioning). For sufficiently large n, there is a

set of t = 4⌈log n⌉ bipartite graphs F1, . . . , Ft, and an online algorithm A, which processes a stream

of edges and assigns each edge to one of the t graphs. The algorithm ensures that at each time, for

each vertex v, degFi
(v) ≤ 300

logn degG(x) + 1. It uses O(n(log n)(log∆)) bits of space.

Proof of Lemma 5.3.2. We claim Algorithm 5.3.1 works for sufficiently large n.

It is clear that at each point in time, for all v ∈ V and i ∈ [t], the algorithm will have degFi
(v)

be the number of edges assigned to Fi incident on v.

Line 8 of the algorithm ensures that before edge {x, y} is assigned, degFi
(x) ≤ 1200 deg(x)/t.

170

Algorithm 5.3.1 Algorithm to partition general graph edges into bipartite graphs

Input: Stream of edges in an n-vertex graph G = (V,E)

Initialize:
1: for v ∈ V do
2: degFi

(v)← 0

3: Setup binary code C of length t := 4⌈log n⌉ from Corollary 5.3.1
4: for i ∈ [t] do
5: Let Fi be the bipartition with parts Ai = {v ∈ V : C(v)i = 0} and Bi = {v ∈ V : C(v)i = 1}

Process(edge {x, y})
6: Let deg(x) =

∑
i∈[t] degFi

(x) and deg(y) =
∑

i∈[t] degFi
(y).

7: for i ∈ [t] do
8: if C(x)i ̸= C(y)i and degFi

(x) ≤ 1200 deg(x)/t and degFi
(y) ≤ 1200 deg(y)/t then

9: Increase degFi
(x) and degFi

(y) by 1
10: Assign edge {x, y} to Fi

11: return
12: unreachable

Consequently, after the edge is assigned, degFi
(x) ≤ 1200 deg(x)/t + 1 ≤ 300 deg(x)/ log(n) + 1.

Similarly, we will have degFi
(y) ≤ 300 deg(y)/ log(n) + 1.

It remains to prove that the algorithm will always assign an edge, and that Line 12 is never

reached. When processing edge an {x, y}, define Bv := {i ∈ [t] : degFi
(v) > 1200 deg(v)/t.

By Markov’s inequality, since
∑

i∈[t] degFi
(v) = deg(v), |Bv| ≤ t/1200. Because the code C has

minimum distance t/400, the set K = {i : C(x)i ̸= C(y)i} has size ≥ t/400; and the set of i ∈ [t]

for which Line 8 passes has size |K \ Bx \ By| ≥ t/400 − t/1200 − t/1200 = t/1200, and hence is

nonempty.

Using Lemma 5.3.2 to route edges to O(log n) instances of an algorithm that handles bipartite

graphs gives the following corollaries, for edge arrival and vertex arrival streams, respectively.

Corollary 5.3.3 (Of Lemma 5.3.2). Say f : N 7→ N is a function for which f(x)/x is monotonically

increasing. Then given an algorithm A for edge coloring with f(∆) colors on edge arrival streams

over bipartite graphs of max degree ∆, which uses g(n,∆) bits of space, one can implement an algo-

rithm B for edge coloring with f(O(∆)) colors on general graphs, using O((g(n,∆)+n log∆) log n)

space.

Proof of Corollary 5.3.3. If ∆ ≤ tn, implement B using the greedy algorithm (Algorithm 5.2.1),

which will use 2∆−1 = f(O(∆)) colors and O(n∆) = O(n log n) space. Otherwise, do the following:

Let D be an instance of Algorithm 5.3.1 from Lemma 5.3.2, with bipartite graphs F1, . . . , Ftn .

Set up tn instances A1, . . . , Atn of A, where Ai is configured to handle edge arrival streams of

maximum degree ∆̂ = ⌊1200∆/tn⌋ + 1 on the bipartite graph Fi. Ensure that each Ai outputs

171

colors in [f(∆̂)]. Whenever an edge e arrives, use D to determine to which bipartite graph Fi the

edge e should be assigned, and then assign it the color (i, Ai.Process(e)) ∈ [tn] ×
[
f(∆̂)

]
. The

total space used will be O(g(n,∆) log n) for the instances of A and O(n log∆ log n) for D. The

number of colors used will be:

tn · f(∆̂) ≤ tnf(⌊1200∆/tn⌋+ 1)

≤ tnf(⌊1201∆/tn⌋) since ∆ ≥ tn

≤ tn
⌊1201∆/tn⌋

2000∆
f(2000∆) since x ≤ y implies f(x) ≤ x

y
f(y)

≤ f(2000∆) .

Combining the previous corollary with that fact that one can convert an algorithm for one-

sided vertex arrival streams on bipartite graphs to general (“two-sided”) vertex arrival streams on

bipartite graphs, only doubling the number of colors used, gives the following:

Corollary 5.3.4 (Of Lemma 5.3.2). Say f : N 7→ N is a function for which f(x)/x is monotonically

increasing. Then given an algorithm A for edge coloring with f(∆) colors on one-sided vertex arrival

streams over bipartite graphs of max degree ∆ with ≤ n fixed vertices, which uses g(n,∆) bits of

space, one can implement an algorithm B for edge coloring under vertex arrivals of general graphs

using f(O(∆)) colors and O((g(n,∆) + n log∆) log n) space.

Proof of Corollary 5.3.4. The proof that this works is similar to that of Corollary 5.3.3. As before,

the case ∆ ≤ tn is addressed using the greedy algorithm. Set up an instance D of Algorithm 5.3.1

from Lemma 5.3.2. For each bipartite graph Fi for i ∈ [tn] from Lemma 5.3.2, let Ai⊔Bi give the two

parts of the graph. Instantiate an instance of A called Xi with fixed vertex set Ai, and one called

Yi with fixed vertex set Bi; both instances should handle vertex degrees up to ∆̂ := ⌊1200∆/tn⌋+1

and output colors in [∆̂]. Whenever a vertex v and multi-set of edges Mv arrives, use D to assign

each edge in Mv to some i ∈ [tn], processing the edges in arbitrary order. Let P : Mv → [tn]

be this assignment. Then for each i ∈ [tn], if v ∈ Ai, send input (v, {e ∈ Mv : P (e) = i}) to

instance Yi; otherwise, with v ∈ Bi, send input (v, {e ∈ Mv : P (e) = i}) to instance Xi. Let

χ : Mv → [f(∆̂)] give the colors assigned by the instances of A. For each e ∈ Mv, assign color

(P (e),1v∈AP (e)
, χ(e)) ∈ [tn] × {0, 1} × [f(∆̂)]; this ensures that no two edges incident on v receive

the same color.

The bounds on the space and number of colors are performed similarly to Corollary 5.3.3.

5.3.2 Color-space tradeoff

We show in this section that if an algorithm can handle multigraphs, then we can smoothly tradeoff

colors with space. This is one of our motivations for extending our algorithms to multigraphs. Recall

172

that we reduce the problem to just bipartite graphs. Now the idea for the tradeoff is simple: we

arbitrarily group t nodes (for some parameter t) from the same partite set together as a single

supernode. Since the vertices on the same partite set do not share any edges, there are no edges

inside a supernode. Then, the resulting multigraph has no self-loops, but can have parallel edges

between each pair of supernodes. Observe that the max-degree can now increase to ∆t, where ∆ is

the max-degree of the original graph. Thus, if we have an S(n,∆)-space f(∆)-coloring algorithm for

multigraphs, then we can turn it into an S(n/t,∆t)-space f(∆t)-coloring algorithm. In particular,

our W-streaming Õ(n
√
∆)-space O(∆)-coloring algorithm will generalizes to an Õ(n

√
∆/t)-space

O(∆t)-coloring for any 1 ≤ t ≤ ∆.

Lemma 5.3.5. Let f, g be functions from N 7→ N. Given a streaming algorithm A for g(∆)-

coloring over edge arrival streams on multigraphs of max degree ∆, using f(N,∆) bits of space,

for any positive integer s, there is a streaming algorithm B for (g(s∆) + s∆)-coloring edge arrival

streams for multigraphs of max degree ∆, using f(N/s, s∆) +O(n log∆) bits of space.

Proof of Lemma 5.3.5. Pseudocode for algorithm B is given by Algorithm 5.3.2.

Algorithm 5.3.2 Adapting an edge coloring algorithm A to trade colors for space, with parameter
s

Input: Stream of edge arrivals for n-vertex graph G = (V,E)
Assume V = [n]

Initialize:
Let χ : Ks 7→ [s] give an s-edge coloring of Ks.

3

1: A← instance of A(⌈n/s⌉,∆s).
2: for v ∈ [n] do
3: dv ← 0

Process(edge {x, y}) → color
4: dx ← dx + 1
5: dy ← dy + 1
6: if ⌈x/s⌉ = ⌈y/s⌉ then
7: Let c← ∆ · (χ({x mod s, y mod s})− 1) + dmin(x,y)

8: return color (0, c)

9: Let c← A.Process(⌈x/s⌉, ⌈y/s⌉)
10: return color (1, c)

This algorithm partitions the set of all vertices into sets S1, . . . , S⌈n/δ⌉, where set Si contains

the s vertices {s(i − 1) + 1, . . . , si − 1, si}. It provides the nested algorithm instance A with the

(non-loop) edges in the graph H formed by contracting these sets. Edges entirely inside one of the

Si are colored using a separate set of ∆s colors.

As the total number of edges incident on a set of s vertices in G is ≤ ∆s, the maximum degree

of H will also be ≤ ∆s. Since instance A is guaranteed to correctly edge color all multigraphs on

173

[⌈n/s⌉] of maximum degree ≤ ∆s, no two edges adjacent to a vertex in H will be assigned the same

color. Consequently, the edges from each individual vertex v ∈ Si to vertices outside S − I will all

be given different colors.

Consider one of the vertex sets Si; a given edge {x, y} with x, y ∈ Si will be assigned a color

which, due to the use of χ to partition edges, will differ from the colors assigned to all other edge

types between vertices in Si; and if the edge {x, y} was processed in the past, this time will assign

a different color since dmin(x,y) has been increased since then.

The algorithm will require f(⌈N/s⌉,∆s) bits of space to store A, and n log∆ bits of state to

keep track of all vertex degrees. The total number of colors used will be g(s∆)+s∆; if g(x) = O(x),

this will be O(s∆).

5.4 Edge coloring on vertex arrival streams

5.4.1 Randomized online algorithm for vertex arrivals

Recall the simple greedy algorithm for online (2∆ − 1)-coloring: we assign each incoming edge a

color that is not already taken up by any of its adjacent edges. However, even in the one-sided

vertex arrival model, to naively implement this algorithm, we need to remember the colors assigned

to edges incident on each vertex on the “fixed” side, and hence, essentially colors assigned to all

previous edges. This needs O(n∆) space, and hence, the greedy algorithm doesn’t seem to help in

getting streaming algorithms.

We observe, however, that for the vertex-arriving side, it is enough to remember only the colors

assigned to edges on the “current” vertex so as to ensure no conflict among these edges. We shoot

for a semi-streaming, i.e., Õ(n) space algorithm, and hence can afford to store the entire edge set

of the current vertex with the assigned colors. To ensure that there is no color-conflict on the fixed

side, we resort to random permutations. On each fixed vertex v, we have a random permutation

σv of [5∆] and a counter hv. When an edge {a, b} arrives with b on the fixed side, we look at the

color at the hbth index of σb. If that color is already taken by any edge incident on a (whose colors

we explicitly store), then we increment the counter hb. We continue this until we find an available

color and increment the counter. The random permutations ensure (i) no color will be repeated on

any fixed vertex (since a permutation maps distinct counter values to distinct colors) and (ii) with

high probability, none of the counters can exceed 5∆. Intuitively, the slack in the number of colors

ensure that for a single edge, an available color is reached within a constant counter increment in

expectation. Hence, the ∆ edges incident on a vertex can increase its counter to at most O(∆) in

3While it is possible to implement this more efficiently, this function can also be evaluated by running the Misra-
Gries algorithm [MG92] in O(s3) time.

174

expectation. Since we only store a counter for each vertex whose value can go up to O(∆), the space

usage is Õ(n). Thanks to the reductions discussed above, we can extend this to a semi-streaming

O(∆)-coloring for the general vertex arrival case, even for general graphs.

Lemma 5.4.1. Theorem 5.4.3 holds for one-sided vertex arrival streams on bipartite graphs.

Proof of Lemma 5.4.1. Consider Algorithm 5.4.1. This algorithm will have the required properties

if ∆ ≥ 6 ln n
δ ; if ∆ is smaller, convert the vertex arrival stream to an edge arrival stream and pass

it to Algorithm 5.2.1, which guarantees a 2∆ − 1 coloring of the graph using O(n∆) = O(n ln n
δ)

bits of space.

Algorithm 5.4.1 Randomized algorithm for 5∆ edge coloring for one sided vertex arrival bipartite
streams

Input: Stream of vertex arrivals n-vertex graph G = (A ⊔B,E)

Initialize:
1: Let C = 5∆.
2: for v ∈ B do
3: Let σv be a uniformly random permutation over [C] ▷ constructed on demand from

random oracle bits.
4: hv ← 1.

Process(vertex x with multiset Mv of edges to B)
5: Let S ← ∅ ▷ Set of colors Mx will have used so far
6: for e = {x, y} in Mx, in arbitrary order do
7: while hy ≤ C ∧ σy[hy] ∈ S do
8: hy ← hy + 1

9: if hy > C then
10: abort
11: Assign color σy[hy] to e
12: S ← S ∪ {σy[hy]}
13: hy ← hy + 1

This algorithm will never assign the same color to any pair of edges adjacent to the same vertex;

at worst, it will abort. The condition on Line 7 ensures that when a vertex x is processed, no two

edges will be assigned the same color. On the other hand, after Line 11 assigns a color to an edge,

Line 13 increases hy; because σv is a permutation, this prevents the algorithm from ever assigning

the same color twice to edges incident on some vertex y in B.

For the rest of the proof, we will argue that the algorithm never aborts; equivalently, that

hy ≤ C always holds for all y ∈ B. In fact, we shall prove the stronger claim, that hy ≤ C − 2∆

holds with probability ≥ 1− δ/n for each individual y ∈ B. Consider a specific vertex y ∈ B. For

each i ∈ [∆], let Vy,i be the random variable counting the number of times that the loop starting at

Line 7 ran, when the ith edge adjacent to y was processed. If there was no ith edge (or the algorithm

already aborted), we set Vy,i = 0; then at the end of the stream, we will have hy ≤ ∆+
∑

i∈∆ Vy,i.

175

We now consider the distribution of Vy,i, conditioned on both the value of the variable S at the

time the ith edge was processed, and on the parts of the permutation σy which the algorithm has

read so far, σy[1..hy − 1].

Pr[Vy,i ≥ k | S, σy[1..hy − 1]] = Pr[σy[hy, . . . , hy + k − 1] ⊆ S | S, σy[1..hy − 1]]

=

(
|S ∩ σy[hy, ..., C]|

k

)
/

(
C − hy − 1

k

)
≤
(
∆

k

)
/

(
2∆

k

)
since |S| ≤ ∆, hy ≤ C − 2∆

≤ ∆ · (∆− 1) · · · (∆− k + 1)

2∆ · (2∆− 1) · · · (2∆− k + 1)
≤ 1

2k
.

Since this bound holds for all values of S and all σy[1..hy − 1], in particular we have

Pr[Vy,i ≥ k|(Vy,j)j<i] = ES, σy [1..hy − 1] compat with (Vy,j)j<i
Pr[Vy,i ≥ k|S, σy[1..hy − 1]] ≤ 1

2k
.

By Lemma 5.4.2, for et ∈ [1, 2), we have E[etVy,i | (Vy,j)j<i] ≤ 1/(2− et), and E[Vy,i | (Vy,j)j<i] ≤ 1.

By a slight variation on the Chernoff bound:

Pr[
∆∑
i=1

Vy,i ≥ 2∆] ≤ inf
t≥0

Pr

[
∆∏
i=1

etVy,i ≥ e2t∆
]

≤ inf
t≥0

1

e2t∆
E[etVy,1 · · ·E

[
etVy,∆ | (Vy,j)j<∆

]
· · ·]

≤ min
t:et∈[1,2)

1

e2t∆

(
1

2− et

)∆

=

(
min

t:et∈[1,2)

1

e2t(2− et)

)∆

=

(
1

maxx∈[1,2) x2(2− x)

)∆

=

(
27

32

)∆

≤ exp(−∆/6) .

Since hv ≤ ∆+
∑

i∈∆ Vy,i, this implies that

Pr[hv ≥ C] ≤ Pr[hv ≥ C − 2∆] = Pr[hv ≥ 3∆] ≤ Pr[

∆∑
i=1

Vy,i ≥ 2∆] ≤ exp(−∆/6) .

Thus, by a union bound, the probability that any vertices v ∈ B will have hv > C at the end

of the algorithm will be ≤ n exp(−∆/6). In particular, if ∆ ≥ 6 ln(n/δ), the algorithm will the

guaranteed to abort with probability ≤ δ.

Lemma 5.4.2. Let W be a nonnegative integral random variable where, for all k ∈ N, Pr[W ≥
k] ≤ 1/2k. Then E[W] ≤ 1; and furthermore, for all t for which et ∈ [1, 2):

E[etW] ≤ 1

2− et
.

176

Proof of Lemma 5.4.2. First,

E[W] =
∞∑
k=0

Pr[W ≥ k] ≤
∑
k=0

1/2k+1 = 1 .

Next,

E[etW] =
∞∑
k=0

etk Pr[W = k] ≤
∞∑
k=0

etk
1

2k+1
=

1

2

∞∑
k=0

(
et

2

)k

=
1

2
· 1

1− 1
2e

t
=

1

2− et
.

The inequality step follows because:

∞∑
k=0

etk
(

1

2k+1
− Pr[W = k]

)
=

∞∑
k=0

etk
(
(
1

2k
− 1

2k+1
)− (Pr[W ≥ k]− Pr[W ≥ k − 1])

)

=
∞∑
k=0

etk
(

1

2k
− Pr[W ≥ k]

)
−

∞∑
k=0

etk
(

1

2k+1
− Pr[W ≥ k − 1]

)

=
∞∑
k=0

etk
(

1

2k
− Pr[W ≥ k]

)
−

∞∑
k=1

et(k−1)

(
1

2k
− Pr[W ≥ k]

)

=

(
1

20
− Pr[W ≥ 0]

)
+

∞∑
k=1

(et − et(k−1))

(
1

2k
− Pr[W ≥ k]

)

= 0 +
∞∑
k=1

et(k−1)(et − 1)

(
1

2k
− Pr[W ≥ k]

)
≥ 0 .

Observe that Corollary 5.3.4 and Lemma 5.4.1 collectively imply Theorem 5.4.3.

Theorem 5.4.3. There is a randomized online O(∆)-edge coloring algorithm for vertex arrival

streams over multigraphs using O(n log(n∆/δ)) bits of space, with error ≤ δ against any adaptive

adversary. It uses O(n∆ log∆) oracle random bits.

5.4.2 Deterministic online algorithm for vertex arrivals

Let us now turn to the deterministic version of the problem. We describe a deterministic algorithm

which uses a advice string, and show that if the advice string is chosen randomly, the algorithm

will with high probability work on every input stream. This algorithm can also be used as a

randomized algorithm, if we choose the advice uniformly at random, and we use a somewhat

complicated analysis to show that this can be achieved using a (random) advice string of length

only Õ(n).

When a vertex a and its neighboring edges are processed, the randomized online vertex arrival

algorithm is greedily finding a coloring (i.e, a matching between edges incident on a, and the next few

available colors for the “fixed” vertices at the endpoints of these edges.) While this greedy selection

works acceptably in the average case, it does not provide strong worst-case guarantees: with

177

Ω(1/poly(n)) probability, some vertex adjacent to a will increase its counter by Ω(log n), thereby

marking (“consuming”) Ω(log n) colors from its random permutation as unavailable. Consequently,

there is small but nonzero risk that a vertex will use up too many colors from its random permutation

and run out. In contrast, our deterministic algorithm for online vertex arrival edge coloring is

designed to ensure that, for any fixed vertex, the amortized number of colors consumed per edge

incident on a fixed vertex is always bounded by a constant.

First, instead of greedily finding a coloring for the edges incident to a, we explicitly construct

a matching in a bipartite graph between the set Ma of edges incident to a and the set of all colors,

where each edge {a, b} in Ma is linked to some of the colors that are known to be still available

for vertex b. This avoids the problem of the greedy color selection, where there was always a small

risk that for some vertex, all the next few colors in its random permutation were used; although

it has the risk that the matching might not exist. Fortunately, as the number of color candidates

per edge in Ma increases, the probability of there being no matching shrinks rapidly. If there are

no repeated edges in Ma, and if each edge has t uniformly randomly chosen color candidates, the

probability of there being no matching is exp(−Ω(t|Ma|)).
Second, instead of using random permutations, the deterministic algorithm uses a certain “good”

array of permutations for which we are guaranteed that whenever we look for a matching, one will

exist. This relies on an additional modification: instead of having each “fixed” vertex v keep

track of a single counter hv, we store a set of ≥ t = Ω(log n) colors known to still be available

for vertex v, and periodically replace this set with a range of new colors from the permutation

σv. The exact details of the encoding ensure that each fixed vertex has only O(poly n) possible

states. Now, consider what happens when a vertex a (with incident edge set Ma) arrives, assuming

for simplicity that Ma has no repeated edges. The number of possible configurations of states of

vertices in N(a) will be exp(|Ma| log n). If each vertex had a random permutation, the probability

of there being no matching would be exp(−Ω(|Ma| log n). By carefully adjusting parameters, we

can ensure the product of these two is exponentially small. Then by a union bound we can show

that the probability (over the random permutations) of any matching failing, for any set Ma and

any associated vertex state, is at most 1
2 . In other words, for a good choice of permutations, our

algorithm would always find a matching, in any state.

A notable problem is that storing each permutation would require Õ(∆) bits each.4 To avoid

this, we select the permutations from small, almost-k-wise independent families of permutations,

instead. This works, but requires a more careful analysis to prove correct, and a large fraction of

our proof is spent dealing with the interaction of this and support for multigraphs.

We now prove two somewhat technical anti-concentration lemmas; intuitively, they say that,

4One could recompute individual “good” permutations on demand, instead of storing all of the permutations, but
this has the risk of the computation itself requiring Õ(n∆) bits of scratch space.

178

even after removing some large fixed set, it is unlikely that the union of many independent random

subsets will be much smaller than expected. They will be used by the proof of Lemma 5.4.6.

Lemma 5.4.4. Let C, t, w be integers, with C ≥ t ≥ 512, and 8|C. Let ε ≤ C−t−1. Say

that F1, . . . , Fw are subsets of [C], and define si = |Fi| for all i ∈ [w]. We furthermore re-

quire mini∈[w] si ≥ 1
2 t, and mini∈[w] si ≥ 1

2 maxi∈[w] si. Let X ⊆ [C] satisfy |X| ≤ 1
8C, and let∑

i∈[w] si ≤
1
2C. Then if σ1, . . . , σw are (ε, t)-wise independent random permutations over [C],

Pr

∣∣∣∣∣∣
⋃
i∈[w]

σi[Fi] \X

∣∣∣∣∣∣ < 1

8

∑
i∈[w]

si

 ≤ exp(− 1

29
tw) .

Proof of Lemma 5.4.4. Since the (σi)i∈[w] are (ε, t)-wise independent, in particular we have for any

i ∈ [w],j ∈ [C], that Pr [j ∈ σi[Fi]] ≤ si/C + ε, and for any Q ⊆ [C] with |Q| ≤ t, that

Pr[Q ⊆ σi[Fi]] =
si · (si − 1) · · · (si − |Q|+ 1)

C · (C − 1) · · · (C − |Q|+ 1)
+ ε ≤

(si
C

)|Q|
. (5.1)

Let Ui be a random subset of [C] in which each element in C is included independently with

probability si/C. Eq. 5.1 thus implies Pr[Q ⊆ σi[Fi]] ≤ Pr[Q ⊆ Ui]. Now, for any fixed setH ⊆ [C],

let YH,i := |σi[Fi] ∩H|, and WH,i = |Ui ∩H|. Then E[YH,i] ≤ si|H|/C + εC = E[WH,i] + εC, and

as a consequence of Eq. 5.1, we have for all k ≤ t, that E[Y k
H,i] ≤ E[W k

H,i] + εC. This lets us bound

the moment generating function of YH,i, for nonnegative z:

EezYH,i ≤
∞∑
k=0

1

k!
(E(zYH,i)

k)

≤
t∑

k=0

1

k!
(E(zYH,i)

k) +
∞∑

k=t+1

1

k!
(E(zYH,i)

k)

≤
t∑

k=0

1

k!
(E(zWH,i)

k) +

∞∑
k=t+1

1

(k − t− 1)!(t+ 1)!
((zsi)

k) + εtC

≤ EezWH,i +
(zsi)

t+1

(t+ 1)!
ezsi + εtC

≤ exp

(
si|H|
C

(ez − 1)

)
+

(zsi)
t+1

(t+ 1)!
ezsi + εtC . (5.2)

We will use this to upper bound the probability that a supermartingale, which sums how many

elements in each σi[Fi] were present in
⋃

j<i σj [Fj], grows too large. Let B1 be an arbitrary set of

size 1
8C which contains X. (This definition will make the following analysis simpler than if we had

set B1 = X). For each i ∈ {2, . . . , w}, define Bi = Bi−1 ∪ σi−1[Fi−1]. Note that |Bw| ≤ 5
8C. We

have E[
∑

i∈[w] YBi,i] ≤
∑

i∈[w]

(
|Bi|
C si + εC

)
≤ |Bw|

C

∑
i∈[w] si ≤

5
8

∑
i∈[w] si.

179

Note that

Pr

∣∣∣∣∣∣
⋃
i∈[w]

σi[Fi] \X

∣∣∣∣∣∣ < 1

8

∑
i∈[w]

si

 ≤ Pr

∑
i∈[w]

YBi,i ≥
7

8

∑
i∈[w]

si

 . (5.3)

Let γ = (78
∑

i∈[w] si)/E[
∑

i∈[w] YBi,i]; this is ≥ 7/5. Applying a modified proof of the Chernoff

bound/Azuma’s inequality to the right hand side of Eq. 5.3 gives:

= inf
z>0

Pr

exp(z ∑
i∈[w]

YBi,i

)
≥ exp

(
γzE[

∑
i∈[w]

YBi,i]

)
≤ inf

z>0

exp
(
z
∑

i∈[w] YBi,i

)
exp

(
γzE[

∑
i∈[w] YBi,i]

) by Markov’s inequality

= inf
z>0

exp

(
z
∑
i∈[w]

(YBi,i − γE[YBi,i])

)

= inf
z>0

E
[
exp (z(YB1,1 − γE[YB1,1])) · · ·E

[
exp (z(YBw,w − γE[YBw,w]))

∣∣YB1,1, . . . , YBw−1,w−1

]
· · ·
]

(In this step, we upper bound terms from the inside out, replacing each Bi with the B that

maximizes the term.)

≤ inf
z>0

∏
i∈[w]

max
B: 1

8
C≤|B|≤ 5

8
C
E exp (z(YB,i − γE[YB,i]))

= inf
z>0

∏
i∈[w]

max
B: 1

8
C≤|B|≤ 5

8
C

E exp (zYB,i)

exp (γzE[YB,i]))

≤ inf
z>0

∏
i∈[w]

max
B: 1

8
C≤|B|≤ 5

8
C

exp
(
si|B|
C (ez − 1)

)
+ (zsi)

t+1

(t+1)! e
zsi + εtC

exp (γzE[YB,i]))
. by Eq. 5.2

Now set z = t
8 1
w

∑
i∈[w] si

. Since t ≤ 2mini∈[w] si, it follows z ≤
2mini∈[w] si
8mini∈[w] si

≤ 1
4 . Since maxi∈[w] si ≤

2mini∈[w] si, we have z ≤ t/(4si) for all i ∈ [w]. This implies (zsi)
t+1/(t+1)!ezsi ≤ (t/4)t+1et/4/(t+

1)! ≤ 1
2 . Since ε ≤ C

−t−1, we also have εtC ≤ 1
2 . Continuing the upper bound of Eq. 5.3:

≤
∏
i∈[w]

max
B: 1

8
C≤|B|≤ 5

8
C

exp
(
si|B|
C (ez − 1)

)
+ 1

exp (γ((zsi|B|/C)− ε))

≤ eγwε
∏
i∈[w]

exp
(
si
8 (e

z − 1)
)
+ 1

exp (γzsi/8)
maximum occurs at |B| = 1

8
C

≤ ew(ln(2)+γε)
∏
i∈[w]

exp((ez − 1− γz)si/8) since (x+ 1)/xγ ≤ 2/xγ−1

180

≤ ew(ln(2)+γε)
∏
i∈[w]

exp

(
−1

4
z
si
8

)
since z ≤ 1

4
implies

1

4
z ≤ 7

5
z − (ez − 1)

= exp

−1

4

tw

8
∑

i∈[w] si

∑
i∈[w]

si
8
+ w(ln 2 + γε)


≤ exp(− tw

28
+ w(ln 2 + γε))

≤ exp(− tw
29

) since
t

29
≥ 1 ≥ ln 2 + γε .

This completes the proof of the lemma.

Lemma 5.4.5. Let C, s, w be integers, with s ≥ 4. Let ε ≤ C−s−1. Say that F1, . . . , Fw are

subsets of [C], with each |Fi| ≤ s, |Fi| ≥ 2 and
∑

i∈[w] |Fi| ≥ 1
2C. Furthermore, let X ⊆ [C] satisfy

|X| ≤ 1
8C. Then if σ1, . . . , σw are (ε, s)-wise independent random permutations over [C],

Pr

∣∣∣∣∣∣
⋃
i∈[w]

σi[Fi] \X

∣∣∣∣∣∣ < 1

16
C

 ≤ exp(−1

2

∑
i∈[w]

|Fi|) .

This lemma differs from Lemma 5.4.4 in that the sets (σi[Fi])i∈[w] are now smaller, and∑
i∈[w] |Fi| is Ω(C).

Proof of Lemma 5.4.5. Because the (σi)i∈[w] are (ε, s)-wise independent, for each i ∈ [w], the ran-

dom variable σi[Fi] has total variation distance ε from being a uniform random subset of [C] of size

|Fi|. Let τ =
⌊

1
16C

⌋
. We will bound the probability that there exists any set T ⊆ [C] of size τ for

which
⋃

i∈[w] σi[Fi] ⊆ T ∪X. Observe:

Pr

∃T ∈ ([C]
τ

)
:
⋃
i∈[w]

σi[Fi] ⊆ T ∪X


≤

∑
T∈([C]

τ)

Pr

 ⋃
i∈[w]

σi[Fi] ⊆ T ∪X


=

∑
T∈([C]

τ)

∏
i∈[w]

Pr [σi[Fi] ⊆ T ∪X] since σi are independent

≤
∑

T∈([C]
τ)

∏
i∈[w]

(|T∪X|
|Fi|

)(
C
|Fi|
) + ε

 since Fi approximately uniform

=
∑

T∈([C]
τ)

∏
i∈[w]

(
|T ∪X| · · · (|T ∪X| − |Fi|+ 1)

C · · · (C − |Fi|+ 1)
+ ε

)

181

≤
∑

T∈([C]
τ)

∏
i∈[w]

(
|T ∪X|
C

)|Fi|
since 2 ≤ |Fi| ≤ s and ε ≤ C−s−1

≤
(
C

τ

)
max

T∈([C]
τ)

(
|T ∪X|
C

)∑
i∈[w] |Fi|

≤ 20.338C
(

3

16

)∑
i∈[w] |Fi|

using |T |+ |X| ≤
(

1

16
+

1

8

)
C and τ ≤ C

16

≤ exp(0.235C − ln(16/3)
∑
i∈[w]

|Fi|)

≤ exp(−1

2

∑
i∈[w]

|Fi|) . since
∑
i∈[w]

|Fi| ≥ C/2

This completes the proof.

Lemma 5.4.6. Theorem 5.4.7 holds for one-sided vertex arrival streams on bipartite graphs.

Proof of Lemma 5.4.6. δ ∈ (0, 1) is a parameter governing the probability that Algorithm 5.4.2 will

fail to be a correct deterministic algorithm, if its advice is chosen randomly. If one just wants a

deterministic algorithm, setting δ = 1/2 suffices. If ∆ ≤ log n∆
δ , we use the simple greedy algorithm

(Algorithm 5.2.1). For ∆ ≥ log n∆
δ , we use Algorithm 5.4.2.

This algorithm maintains, for each vertex v ∈ B, two variables bv and Qv that indicate which

colors in [C] are certainly available for that vertex. It ensures that none of the colors in the set

Ξv = {σv[(bv − 1)s)] : i ∈ Qv} ⊔ {σv[j] : j > bvs} have been used. When a new vertex x in A

arrives, along with the multisetMx of edges adjacent to it, the algorithm selects a set Fy indicating

candidate colors σy[Fy] for each y adjacent to x, and computes a matching between the edges in

Mx and the set of all colors, allowing each edge in Mx only the colors corresponding to the edge’s

endpoint in B. This matching ensures that all edges incident to x receive different colors; and for

all y ∈ B, the use of the set Fy to constrain the set of candidate colors to a subset of Ξv ensures

that all incident to y receive different colors.

For a given vertex y, as the algorithm runs, by will be increased, by either Line 18 or 22. Line

18 only triggers when |Qy| ≤ s − 1
217
s, which requires that vertex y has received ≥ 1

217
s incident

edges since the last time by was increased. Since there will be at most ∆ edges incident to y, the

total increase to by from this line over the course of the algorithm will be ≤ ∆/(1
217
s) = 217∆/s.

On the other hand, Line 18 only triggers when dx,y ≥ 1
16s, and then increases by by ⌈64dx,y/s⌉+1.

Since
∑

x∈A dx,y ≤ ∆,

∑
x∈A:dx,y>

1
16

s

(⌈
64dx,y
s

⌉
+ 1

)
≤

∑
x∈A:dx,y>

1
16

s

(
64dx,y
s

+ 2

)
≤

∑
x∈A:dx,y>

1
16

s

96dx,y
s
≤ 96∆

s
.

Thus, the total increase in by will be ≤ (217 + 96)∆/s, and by will always be ≤ (217 + 97)∆/s.

182

Algorithm 5.4.2 Deterministic algorithm for O(∆) edge coloring for one sided vertex arrival
bipartite streams

Input: Stream of vertex arrivals for n-vertex graph G = (A ⊔B,E) of max degree ∆

δ ∈ (0, 1) is a parameter so that, if the advice is chosen randomly, it will work for all inputs
with probability ≥ 1− δ

Initialize: ▷ Requires: ∆ ≥ log n∆
δ

Let C = 218∆.
Let s =

⌈
218 log n∆

δ

⌉
.

Advice: (σv)v∈B, where each σv is a permutation over [C]. If chosen randomly, each is (ε, s)-wise
independent for ε ≤ C−s−1

1: for v ∈ B do
2: bv ← 1.
3: Qv ← [s].

Process(vertex x with multiset Mx of edges to B)
Let dx,y be the number of times edge {x, y} is in Mx

4: for each y ∈ B with dx,y > 0 do
5: if dx,y <

1
16s then

6: Let Fy = (by − 1)s+Qy

7: else
8: Let Fy = ((by − 1)s+Qy) ⊔ [bys, by +

⌈
64da,b

s

⌉
s]

9: Construct bipartite graph H fromMx to [C], where each edge e ∈Mx connects to all c ∈ σy[Fy].
10: Compute an Mx-saturating matching P of H.
11: for each e ∈Mx do
12: Assign color P (e) to e
13: if dx,y <

1
16s then

14: Remove σ−1
y − (by − 1)s from Qy

15: for each y ∈ B with dx,y > 0 do
16: if dx,y <

1
16s then

17: if |Qy| ≤ s− 1
217
s then

18: by ← by + 1
19: Qy ← [s]

20: else
21: Qy ← [s]

22: by ← by +
⌈
2dx,y
s

⌉
+ 1

Looking at the construction of the set Fy on Lines 6 and 8, we see that it will only ever contain

elements which are ≤ (217+98)∆. Since C = 218∆ ≥ (217+98)∆, it follows that computing σy[Fy]

will never index out of range.

The only remaining way this algorithm could fail is if Line 10 were to report that no Mx-

saturating matching exists. We will show that, if the (σv)v∈B are drawn from (ε, s)-wise independent

distributions, then with probability ≥ 1−δ, for all possible setsMx and combinations of “free slots”,

183

(Fy)y:dx,y>0, Hall’s condition will hold on the graph H constructed on Line 9.

Since whether the constructed graph H has a matching does not depend on the value of x, only

on the number of edges arriving at a given y ∈ B, we do not need to take a union bound over

all possible sets Mx. Instead, define a configuration by a tuple (S, (dy)y∈S , (by)y∈S , (Qy)y∈S). The

set S gives the neighborhood of x, and for each y ∈ S we set dy = dx,y. The values by, Qy match

the values from the algorithm at the time Mx arrives. Note that the set Fy is a function of by,

Qy, and dy, and for fixed by, Qy is monotone increasing as a function of dy. We do not need any

extra cases to handle Hall’s condition for subsets of Mx; consider any subset M ′
x ⊆ Mx, and let

S′, d′y, F
′
y correspond to M ′

x. Then because F ′
y ⊆ Fy for each y ∈ S′, if Hall’s condition holds for

the configuration (S′, (d′y)y∈S′ , (by)y∈S′ , (Qy)y∈S′), then∣∣∣∣∣∣
⋃
y∈S′

Fy

∣∣∣∣∣∣ ≥
∣∣∣∣∣∣
⋃
y∈S′

F ′
y

∣∣∣∣∣∣ ≥
∑
y∈S′

d′y ,

which implies that Hall’s condition also holds for the subset M ′
x within the bipartite graph H

constructed for Mx.

Let d =
∑

y∈S dy. If the permutations (σy)y∈B were each chosen uniformly at random, it would

be straightforward to prove that Hall’s condition fails for each configuration (S, (dy)y∈S , (by)y∈S ,

(Qy)y∈S) with probability ≤ ed(d/C)Θ(|S|s+d), after which a union bound over configurations gives

a ≤ δ total failure probability. However, because we assume the (σy)y∈B are only (ε, s)-wise

independent, we will need a more precise argument.

Each configuration (S, (dy)y∈S , (by)y∈S , (Qy)y∈S) can be split into O(log∆) different “level con-

figurations”. Let τ = s/16; then for each vertex y, if dy < τ , the algorithm will choose Fy using

Line 6 to be a subset of size ≤ s and ≥ s(1 − 2−17) ≥ s/2; and if dy ≥ τ , the algorithm will

choose Fy using Line 8, to be a subset of size ≥ 64dy. Define L0 = {y ∈ S : dy < τ}. For each

ℓ ∈ {1, . . . , λ}, for λ = ⌈log∆⌉ let Lℓ = {y ∈ S : 2ℓ−1τ ≤ dy < 2ℓτ}. Also write L>ℓ =
⋃

j>ℓ Lj .

Within each “level”, the values of dy are either all small (< τ), or all within a factor 2 of each

other. We will show that with high probability, the following two conditions hold:

∀ℓ ≥ 1,∀(Lλ, . . . , Lℓ+1) where max
i>ℓ

(3/2)i−ℓ|Li| ≤ |Lℓ|,∀dy, by, Qy for y ∈
⊔
j≥ℓ

Lℓ :∣∣∣∣∣∣
 ⋃

y∈Lℓ

σy[Fy]

 \
 ⋃

y∈L>ℓ

σy[Fy]

∣∣∣∣∣∣ ≥ 8
∑
y∈L0

dy (5.4)

∀(Lλ, . . . , L1) where max
i>0

(3/2)i|Li| ≤ |L0|,∀dy, by, Qy for y ∈
⊔
j≥0

Lℓ :∣∣∣∣∣∣
 ⋃

y∈L0

σy[Fy]

 \
 ⋃

y∈L>0

σy[Fy]

∣∣∣∣∣∣ ≥
∑
y∈L0

dy . (5.5)

184

Then for the specific configuration (S, (dy)y∈S , (by)y∈S , (Qy)y∈S), let A ⊆ {0, . . . , λ} contain all ℓ

for which |Lℓ| ≥ maxi>ℓ(3/2)
i−ℓ|Li|. Because the condition of Eq. 5.4 holds for all i ∈ A with

i > 0, these “levels” of the configuration are associated with enough entries of C that they “pay

for” all levels with smaller degrees that also do not have many more vertices. Level L0 pays for

itself if 0 ∈ A, by Eq. 5.5. Formally, we have:

|
⋃
y∈S

σy[Fy]| =
∑

i∈{0,...,λ}

|(
⋃
y∈Li

σy[Fy]) \ (
⋃

y∈L>i

σy[Fy])|

≥
∑
i∈A
|(
⋃
y∈Li

σy[Fy]) \ (
⋃

y∈L>i

σy[Fy])|

≥ 10∈A

∑
y∈L0

dy

+
∑

i∈A\{0}

8
∑
y∈Li

dy

≥ 10∈A

∑
y∈L0

dy

+
∑

i∈A\{0}

8 · 2i−1τ |Li|

= 10∈A

∑
y∈L0

dy

+
∑

i∈A\{0}

4 · 2iτ |Li|

≥ 10∈A

∑
y∈L0

dy

+
∑

i∈A\{0}

∑
j≤i

(
3

4

)i−j (
2iτ |Li|

)

≥ 10∈A

∑
y∈L0

dy

+
∑

i∈A\{0}

∑
j≤i:|Lj |≤(3/2)i−j |Li|

2jτ

(
3

2

)i−j

|Li|

≥ 10∈A

∑
y∈L0

dy

+
∑

i∈A\{0}

∑
j≤i:|Lj |≤(3/2)i−j |Li|

2jτ |Lj |

≥ 10∈A

∑
y∈L0

dy

+
∑

i∈A\{0}

∑
j≤i:|Lj |≤(3/2)i−j |Li|

∑
y∈Lj

dy

=
∑

i∈{0,...,λ}

∑
y∈Lj

dy =
∑
y∈S

dy .

We first observe that Eq. 5.4 matches the conditions for Lemma 5.4.4. Specifically, if y ∈
Lℓ for ℓ > 1, then dy ≥ s/16, and we have both |Fy| ≥ s and |Fy| ≥ 64dy. Also, since the

dy ∈ [2ℓ−1τ, 2ℓτ), we will have maxy∈Lℓ
|Fy| ≤ 2miny∈Lℓ

Fy. Letting X =
⋃

y∈L>i
σy[Fy], we have

|X| ≤
∑

y∈L>i
|Fy| ≤

∑
y∈L>ℓ

(2s + 64dy) ≤ 96∆ ≤ 1
8C . Similarly,

∑
y∈Lℓ

σy[Fy] ≤ 96∆ ≤ 1
2C.

Thus, Lemma 5.4.4 applies, and gives an exp(−O(s|Lℓ|)) upper bound on the probability that

|
⋃

y∈Lℓ
σy[Fy] \X| ≥ 4

∑
y∈L0

dy.

For Eq. 5.5, if
∑

y∈L0
|Fy| ≥ 1

2C, we apply Lemma 5.4.5. As argued above, the set X =⋃
y∈L>0

σy[Fy] will have size ≤ 1
8C. If the bad event in Lemma 5.4.5 does not hold, then the

185

condition in Eq. 5.5 will, since
∑

y∈L0
dy ≤ ∆ ≤ 1

16C. On the other hand, if
∑

y∈L0
|Fy| < 1

2C, we

apply Lemma 5.4.4; this works because we have |Fy| ≥ (1− 2−17)s ≥ 1
2s.

Since Lemma 5.4.4 and Lemma 5.4.5 both ensure a exp(−Ω(s|Li|)) type upper bound for the

probability of conditions from Eqs. 5.4 and 5.5, we can bound the probability that none of the

individual event fails in a single sum. Since for each y, Qy is refreshed after at least s/217 elements

are removed from it, there are only
∑⌈s/217⌉

i=0

(
s
i

)
≤ 2sH(1/216) ≤ exp(s/211) possible values for Qy;

here H is the binary entropy function.

Pr[Eqs. 5.4 and 5.5 hold]

≤
∑

ℓ∈{0,...,λ}

∑
w∈{1,...,∆}

where |Lℓ| = w

∑
Lλ,...,Lℓ

all |Lj | ≤ (2/3)j−ℓw

∑
(dy ,by ,Qy)y∈

⊔
j≥ℓ Lj

exp(−sw/29)

≤
∑

ℓ∈{0,...,λ}

∑
w∈{1,...,∆}

where |Lℓ| = w

∏
j≥ℓ

(
(n+ 1)C2 exp(s/211)

)(2/3)j−ℓw
exp(−sw/29)

≤
∑

ℓ∈{0,...,λ}

∑
w∈{1,...,∆}

where |Lℓ| = w

(
(n+ 1)C2 exp(s/211)

)3w
exp(−sw/29)

≤
∑

ℓ∈{0,...,λ}

∑
w∈{1,...,∆}

where |Lℓ| = w

(nC)6w exp(−sw/211) since (n+ 1) ≤ n2 and 2−9 − 3 · 2−11 = 2−11

≤
∑

ℓ∈{0,...,λ}

∑
w∈{1,...,∆}

where |Lℓ| = w

exp(−sw/212) since s ≥ 6 · 212(18 + log(n∆)) ≥ 6 · 212 ln(nC)

≤ (λ+ 1)∆exp(−s/212) ≤ δ . since s ≥ 213 log(∆/δ) ≥ 213 ln(∆/δ)

Thus,

Pr[any configuration fails Hall’s condition] ≤ δ .

If the (ε, s)-wise random permutations over [C] are constructed using Lemma 5.7.1 (assuming

∆ is a power of two), then the total number of bits of randomness needed to sample advice for the

algorithm will be O(ns(logC)4 log 1
ε) = O(ns2(logC)5) = O

(
n
(
log n∆

δ

)2
(log∆)5

)
.

Combining Corollary 5.3.4 with Lemma 5.4.6, we immediately get the following theorem.

Theorem 5.4.7. There is a deterministic online O(∆)-edge coloring algorithm for vertex arrival

streams over multigraphs using O(n log(n∆)) bits of space, using an advice string of length Õ(n),

which works for all inputs. (By picking a uniformly random advice string, the same algorithm can

alternatively be used as a robust algorithm with 1/ poly(n) error; the advice can also be computed

in exponential time.)

186

5.5 Edge coloring on edge arrival streams

5.5.1 W-streaming algorithm for edge arrivals

In this section, we describe a W-streaming (not online) algorithm for edge arrivals that builds on

a given vertex arrival algorithm. Let D = O(
√
∆). We initiate O(

√
∆) copies of an Õ(n) space

O(D)-coloring one-sided vertex arrival algorithm, where the max-degree can go up to D. Now, as

the edges of a bipartite graph5 with max-degree ∆ arrive (in any arbitrary edge arrival order), for

each node, we store its incident edges until its degree reaches
√
∆. Then, we feed all these edges

to some copy of the vertex arrival algorithm. Observe that since each node can have
√
∆ such

“blocks” of
√
∆ incident edges,

√
∆ copies suffice. However, when we feed the nodes from one side

to the vertex arrival algorithm, we only ensure that the nodes on that side have degree at most
√
∆, but there is no guarantee on the nodes on the fixed side. We work around this by randomly

assigning the nodes to the
√
∆ copies: this ensures that in all the copies, each node on the fixed side

also has degree at most O(
√
∆) = D. Thus, each copy uses O(

√
∆) colors and since the O(

√
∆)

copies use disjoint palettes, the total number of colors used is O(∆). For the space bound, notice

that each vertex arrival copy uses Õ(n) space, and hence the copies use Õ(n
√
∆) space in total.

Additionally, we store edges on a node until its degree reaches
√
∆, pass these edges to a vertex

arrival copy, and delete them. Hence, this takes Õ(n
√
∆) space as well.

We can extend this algorithm to handle multigraphs. Hence, by the space-color tradeoff tech-

nique of Lemma 5.3.5, we can obtain an O(∆t)-coloring algorithm in Õ(n
√
∆/t) space for any

1 ≤ t ≤ ∆.

Lemma 5.5.1. Given a streaming algorithm A for O(∆) edge coloring for one-sided vertex arrival

streams over bipartite multigraphs using ≤ f(n,∆) space, we can construct a streaming algorithm B
for O(∆) edge coloring of edge arrival streams over bipartite multigraphs using O(

√
∆f(n,O(

√
∆))+

n
√
∆(log n∆) log(n/δ)) bits of space. The new streaming algorithm B is randomized, runs in poly-

nomial time, and has additional ≤ δ probability of error, even if the input stream is adaptively

generated.

To prove this, we will need the following inequality:

Lemma 5.5.2 ([Fre75], Thm 1.6). Let X1, . . . , Xn be [−1, 1] random variables, with zero conditional

expectation (E[Xi|X1, . . . , Xi−1] = 0). Let Sk =
∑k

i=1Xi. (Note that S1, . . . , Sn is a martingale.)

Define V1, . . . , Vn so that Vi = E[Var[Xi]|X1, . . . , Xi−1]. Then for a, b > 0,

Pr[∃k : Sk ≥ a and Vk ≤ b] ≤ exp(−a2/(2a+ b)) .

5Recall that by Corollary 5.3.3 it’s enough to consider only bipartite graphs.

187

Proof of Lemma 5.5.1. The W-streaming edge-arrival algorithm is given by Algorithm 5.5.1. The

algorithm uses s = O(
√
∆) instances of A. This algorithm maintains a pool P of edges, and

whenever it receives a new edge it adds it to the pool. Edges with high multiplicity (≥ τ =

Ω(
√
∆/ log(n/δ)) in P are moved to a different pool L; since there are not many of this type, they

can be stored using only Õ(n
√
∆) space. When a vertex v reaches a high degree (≥

√
∆) in the

pool, it and its incident edges are removed from P and assigned to a random instance of A which

has not yet received v. At the end of the stream, all edges still stored in P ∪ L are colored.

Algorithm 5.5.1 W-streaming algorithm for O(∆) edge coloring on edge-arrival stream given
black-box access to algorithm A for C∆ edge coloring on vertex-arrival stream

Input: Stream of edge arrivals for n-vertex graph G = (A ⊔B,E)

Initialize:

1: Let s = 2
⌈√

∆
⌉

2: Let τ =
⌊ √

∆
12 ln(n/δ)

⌋
3: P ← ∅ is a multiset of edges ▷ used to cache all arriving edges
4: L← ∅ is a multiset of edges ▷ used to efficiently store edge types which have high multiplicity
5: for i ∈ [s] do
6: I(i) ← instance of algorithm A for graphs of max degree ⌈4∆/s⌉; this will use C⌈4∆/s⌉

colors
7: x(i) ← [0, . . . , 0] ∈ {0, 1}A ▷ tracks for which vertices w in A, I(i) has received (w,Mw)

Process(edge {x, y})
8: P ← P ∪ {{x, y}}.
9: if edge {x, y} has multiplicity ¿ τ in P then

10: Remove all copies of {x, y} from P , and add them to L
11: return
12: if ∃v ∈ A with degree ≥

⌈√
∆
⌉
in P then

13: Pick random i from
{
j ∈ [s] : x

(j)
v = 0

}
14: x

(i)
v ← 1 ▷ Mark instance I(i) as having received v

15: Let Mv be edges incident on v in P ▷ i.e, Mv forms a “star” of degree
√
∆ around v

16: Send (v,Mv) to I(i) to be colored
17: Remove Mv from P

End of Stream
18: Color edges in P ∪ L greedily using an independent set of 2∆− 1 colors

Algorithm 5.5.1 requires sf(n) bits of space to store the instances I(1), . . . , I(s), and sn bits

to keep track of the vectors x(1), . . . , x(s). Since the edges adjacent to a vertex in A are removed

from P as soon as it reaches degree
⌈√

∆
⌉
, the total number of edges in P , counting multiplic-

ity, will be ≤ |A|(
⌈√

∆
⌉
− 1) = O(n

√
∆). Thus, P can be stored using O(n

√
∆ log(n) bits of

space. Finally, since L receives only edges whose multiplicity was at least τ , it will contain at

most (n∆/2)/τ = O(n
√
∆ log(n/δ)) distinct edges; keeping track of them and their multiplicity

188

can be done in O
(
n
√
∆ log(n∆)(log n) log(n/δ)

)
space. In total, Algorithm 5.5.1 will require

O(
√
∆(f(n) + n(log n∆)2) log(n/δ))) bits of space.

The total number of colors used is 2
⌈√

∆
⌉
· C⌈4∆/s⌉+ (2∆− 1) = O(∆).

Because Algorithm 5.5.1 only sends a star around a vertex v to an instance I(i) (Line 16) when
the vertex v has degree =

⌈√
∆
⌉
in P , the maximum degree of arriving vertices that any instance

of A will process will be
⌈√

∆
⌉
. However, it is still possible that over the course of the stream, for

some sketch I(i), a vertex v ∈ B will receive too many edges from vertices in A.

For each pair i ∈ [s], z ∈ B, we will show that sketch I(i) receives ≤ 4∆/s edges (counting

multiplicity) for z, with ≥ 1 − δ
n2 probability. For j ∈ [∆], let Wj be the random variable giving

the number of times the edge between between z and the center of jth star adjacent to z is present

in the star. If the stream ends before a jth star is removed, then Wj = 0. Because Line 10 removes

all edges with multiplicity > τ in P , we have 0 ≤ Wj ≤ τ . Also for each j ∈ [∆], define Zj to be

the indicator random variable for the event that the jth star is sent to I(i), by Line 13 ; if there

is no jth star, Zj = 0. Because s = 2
⌈√

∆
⌉
, and each star has root degree only

⌈√
∆
⌉
, there will

always be ≥ s/2 instances that have not received a given vertex as the root of a star, so E[Zj] ≤ 2
s .

Now for each j ∈ [∆], define the random variable Xj =WjZj ; this counts the number of edges from

the jth star for I(i). Because the choice of where to put a star is made after the star is picked, we

in fact have E[Zj |X1, . . . , Xj−1,Wj] ≤ 2
s . This is true even if the input stream is produced by an

adaptive adversary. Consequently,

∑
j∈[∆]

E[Xj |X1, . . . , Xj−1] =
∑
j∈[∆]

E[ZjWj |X1, . . . , Xj−1]

≤ 2

s

∑
j∈[∆]

E[Wj |X1, . . . , Xj−1] ≤
2

s
max

∑
j∈[∆]

Wj ≤
2∆

s
.

The total number of edges received for z in I(i) is
∑

j∈[∆]Xj , which has expectation ≤ 2∆
s . To

bound the probability that this number exceeds its expectation by much, we apply the following

argument, using martingales.

Let Y1, . . . , Y∆ be random variables, where for each i ∈ [∆], we define the difference Yi =

1
τ (Xi − E[Xi|X1, . . . Xi−1]). This ensures that E[Yi|Y1, . . . , Yi−1] = 0. We also have |Yi| ≤ 1.

Furthermore, since E|Yi|2 = Var[Xi/τ |X1, . . . Xi−1]] ≤ E[(Xi/τ)
2|X1, . . . Xi−1]], we have:

∆∑
i=1

E[Y 2
i |Y1, . . . , Yi−1] ≤

∆∑
i=1

E[
1

τ2
X2

i |X1, . . . , Xi−1]

≤ 1

τ

∆∑
i=1

E[Xi|X1, . . . , Xi−1] since Xi ≤ τ

≤ 1

τ
· 2∆
s
.

189

We now apply one of the inequalities stated in [Fre75], which we reproduced as Lemma 5.5.2, to

find:

Pr

[
∆∑
i=1

Yi ≥
2∆

τs

]
≤ Pr

[
∃k ∈ [∆] :

k∑
i=1

Yi ≥
2∆

τs
and

k∑
i=1

E[Y 2
i |Y1, . . . , Yi−1] ≥

2∆

s

]

≤ exp

(
−(2∆τs)

2

2(2∆τs + 2∆
τs)

)
= exp

(
− ∆

2τs

)
.

Since E[
∑

j∈[∆]Xj] ≤ 2∆/s,

Pr

[
∆∑
i=1

Xi ≥
4∆

s

]
≤ exp

(
− ∆

2τs

)
= exp

− ∆

2(2
⌈√

∆
⌉
)
⌊√

∆/(12 ln(n/δ)
⌋


≤ exp (−2 ln(n/δ)) ≤ δ

n2
. since 2

⌈√
∆
⌉
≤ 3
√
∆ and 1/⌊x⌋ ≥ 1/x

By a union bound over all ≤ n vertices v ∈ B, and all ≤ n instances in {I(j)}j∈[s], we have that
the total probability of any vertex v in an instance I(i) receiving more than 4∆/s edges is ≤ δ.

Combining Lemma 5.5.1 with Lemma 5.4.1, and then applying Corollary 5.3.3 proves the fol-

lowing.

Theorem 5.5.3. There is a randomized W-streaming algorithm for O(∆) edge coloring on edge

arrival streams for multigraphs which uses O(n
√
∆(log(n∆))2) bits of space, with error ≤ 1/ poly(n)

against any adaptive adversary. The algorithm also requires Õ(n∆) bits of oracle randomness.

5.5.2 Randomized online algorithm for edge arrivals

The W-streaming algorithm is not online since it waits until a vertex has degree
√
∆ before passing

it to the vertex arrival algorithm and announcing its edges’ colors. To design an online algorithm

under the same color and space bounds, we maintain a “tracker” set of O(
√
∆) colors available

to a vertex. This set is obtained by shuffling through O(
√
∆)-size “blocks” of an appropriate

random permutation of the O(∆)-size palette. When an edge {u, v} arrives, we find a color in the

intersection of these sets of available colors for u and v, assign it to {u, v}, and remove it from both

sets. We “refresh” the tracker set of a vertex to get a new block of colors when it shrinks by a

(large enough) constant fraction. Although the algorithm is simple, the challenge is in proving that

for each vertex, we can use the same tracker set of s = O(
√
∆) colors for Ω(s) of the neighbors of

v. Specifically, for all those neighbors, we shall find a color in the intersection of the two tracker

sets with high probability. For this, we need (ε, s)-wise independent random permutations (see

Definition 5.2.1) and an involved analysis using their guarantees. Further, we show in Lemma 5.7.1

that even though the permutations are over [c∆] for some large constant c, we can store only

190

O(s polylog(c∆)) = Õ(
√
∆) bits and generate such a permutation. Hence, we can store all the

permutations in our memory of Õ(n
√
∆).

The following online edge coloring algorithms will both use the same core primitive; a pool of

random colors, which is periodically refreshed, along with data to keep track of which colors in the

pool have been used so far. The times at which the pool are refreshed only depend on the number

of colors that were used, and not which colors where used; this property makes the primitive easier

to handle in proofs. For the randomized algorithm, we will not need the optional reference tracking.

Listing 5.5.2 Storing free regions from a permutation

F ←InitFreeTracker(C,s,∆,σ): ▷ Assume C,s,∆ are powers of two, and σ permutation of
[C], and C ≥ ∆

1: H ← [s] be a subset of [s]
2: b← 1 be a counter between 1 and C/s
3: Optional: Q← ∅ is a set of references to objects

Interpreting F as subset of [C]
4: return σ[H + (b− 1)s]

F .RemoveAndUpdate(c, optional: o) ▷ Requires c ∈ Fv

5: H ← H \ {σ−1(c)}
6: Optional: Add a reference to o, and store it in Q
7: if |H| ≤ s− s∆/C then ▷ Switch to next block
8: H ← [s]
9: b← b+ 1

10: Optional: Drop all references in Q and set Q← ∅

Theorem 5.5.4. Given any adversarial edge-arrival stream of a simple graph, there is a randomized

algorithm for online O(∆)-edge-coloring using O(n
√
∆ log n) bits of space and Õ(n

√
∆) oracle

random bits.

Proof of Theorem 5.5.4. We will show that Algorithm 5.5.3 satisfies the claims of the lemma, if

∆ = Ω(log(n/δ)). (For smaller values of ∆, fall back to the greedy algorithm (Algorithm 5.2.1).)

In the following argument, we shall assume that the permutations (σv)v∈S are s-wise independent.

The pseudocode states (ε, s)-wise independence, since that is attainable per Lemma 5.7.1 using

only O(spoly(log 1/ε, log s)) bits of randomness per permutation. This will not affect the validity

of the proof, since it at most increases the probabilities of events H{u,v} and Ju,v defined later by

ε, which is polynomially smaller than the losses in the argument due to bounding the number of

events by n2 instead of
(
n
2

)
or n2 − n. We also assume that ∆ is a power of two; if not, we can

increase ∆ to the nearest power of two, and the algorithm will still give an O(∆) coloring.

Each color tracker Fv can be stored using O(log∆) bits for b, and O(s) bits for H; thus

Algorithm 5.5.3 will use O(n(s + log∆)) = O(n
√

∆ log(n/δ)) bits in total. For ∆ = O(log(n/δ)),

191

the Algorithm 5.2.1 uses O(n∆) bits, which is also O(n
√

∆ log(n/δ)).

Algorithm 5.5.3 Randomized algorithm for O(∆) edge coloring for simple graph edge arrival
streams

Input: Stream of vertex arrivals n-vertex graph G = (A ⊔B,E)
Assume ∆ is a power of two, and ∆ = Ω(log(n/δ))

Initialize:
1: Let C = 128∆
2: Let s be the least power of two which is ≥ 128

√
∆ log(n/δ)

3: Let H be an (ε, s)-wise independent distribution of permutations on [C], with ε ≤
exp(−s2/C) ≤ (δ/n)128

4: for v ∈ B do
5: Let σv be a random permutation from H
6: Fv ← InitFreeTracker(C, s,∆, σv), without reference count tracking

Process(edge {x, y}) → color
7: if Fx ∩ Fy = ∅ then
8: abort
9: Let c be chosen uniformly at random from Fx ∩ Fy.

10: Fx.RemoveAndUpdate(c)
11: Fy.RemoveAndUpdate(c)
12: return color c

For each v ∈ V , i ∈ [C/s], write Pv,i for the set σ[[s] + (i − 1)s] of the free region tracker Fv

for vertex v. (See Listing 5.5.2.) Since we are assuming the σv are s-wise independent, the set Pv,i

will be uniformly distributed over over
(
[C]
s

)
.

Consider a fixed input stream e1, e2, . . ., where the edges of the stream together form the simple

graph G. Write bx,{u,v} for the value of the counter b inside Fx just before the algorithm processed

edge {u, v}. Let D{u,v} := Pu,bu,{u,v} ∩ Pv,bv,{u,v} . Also define Mu,v := {x : {x, u} ∈ G ∧ bu,{x,u} =

bu,{u,v} ∧ {x, u} ≺ {u, v}}; this is the set of vertices which were adjacent to u, for which the edge

{x, u} was added before {u, v}, and while the value of the counter b inside Fu for vertex u was the

same as it was at the time {u, v} was added. This is the set of vertices whose color choices might

reduce the size of Fu ∩ Fv at the time {u, v} is added.
We will first show that of the following two classes of m events, the probability that any of the

events is true is ≤ δ/2.

∀{u, v} ∈ G : H{u,v} :=

{
|D{u,v}| ≤

1

2
s2/C

}

∀(u, v) where {u, v} ∈ G : Ju,v :=

 ∑
x∈Mu,v

|D{u,v} ∩ Px,bx,{x,u} | ≥ 2 · 3
2

s3

C2

∆s

C

 .

192

To bound the probability of H{u,v}, we let X1, . . . , XC be indicator random variables where

Xi = 1 iff i ∈ Pu,bu,{u,v} . Since the Xi are negatively associated, by the Chernoff bound applies (see

Lemma 2.3.3), and

Pr[|D{u,v}| ≤
1

2
s2/C] = Pr[|D{u,v}| ≤

1

2
E[|D{u,v}|]]

= Pr[
∑

i∈[Pv,bv,{u,v}]

Xi ≤
1

2
E[|D{u,v}|]]

≤ exp(−1

8
E[|D{u,v}|]) = exp(− s2

8C
)

≤ exp(−16 log n
δ
) ≤ δ

2n2
.

To bound the probability of the events {Ju,v}, we will show that |Du,v| is not too large w.h.p,

and conditioned on that, the sum
∑

x∈Mu,v
|D{u,v}∩Px,bx,{x,u} | is not too large w.h.p. With {Xi}i∈[C]

as defined above:

Pr[|D{u,v}| ≥
3

2
s2/C] = Pr[|D{u,v}| ≥

3

2
E[|D{u,v}|]]

≤ Pr[
∑

i∈[Pv,bv,{u,v}]

Xi ≥
3

2
E[|D{u,v}|]]

≤ exp(− 1

10
E[|D{u,v}|]) = exp(− s2

10C
)

≤ exp(−128

10
log

n

δ
) ≤ δ

4n2
.

The permutations {σx}x∈Mu,v are independent of σu and σv. For each x ∈ Mu,v, let Y1,x, . . . , YC,x

be indicator random variables where Yi,x is 1 iff i ∈ Px,bx,{x,u} , and zero otherwise. Due to the

frequency of free color buffer refreshing, |Mu,v| ≤ s∆/C; and since |Px,bx,{x,u} | = s, EYi,x = s/C.

Since the {Yi,x}i∈D{u,v},x∈Mu,v are negatively associated, we can apply a Chernoff bound. If we

assume that |D{u,v}| ≤ 3s2

2C , then we have:

Pr

 ∑
x∈Mu,v

|D{u,v} ∩ Px,bx,{x,u} | ≥ 2
∆s2

C2

3s2

2C

 = Pr

 ∑
i∈D{u,v},x∈Mu,v

Yi,x ≥ 2
∆s2

C2

3s2

2C


≤ exp

(
−1

8

∆s2

C2

3s2

2C

)
≤ exp(−12(log(n/δ))2) ≤ δ

4n2
.

Thus, the probability that either |D{u,v}| ≥ 3s2

2C or event Ju,v does not hold is δ
2n2 .

For the rest of the proof, we will consider the case where none of the events Ju,v or H{u,v} holds;

this happens with probability ≥ 1 − δ/2. Fix values of the (σv)v∈V satisfying none of the events.

193

The only other random decisions made by the algorithm are the choices made on Line 9, randomly

choosing the edge color χ{u,v} for {u, v} from Fu ∩ Fv. We will prove by induction on the number

of edges processed that the probability of |Fu∩Fv| ≤ 1
4s

2/C holding at the time Line 9 is executed,

in total over all t edges so far is, ≤ δ · t/(2n2).
To do this, we will use the following lower bound:

|Fu ∩ Fv| ≥ |D{u,v}| −
∑

x∈Mu,v

Wx,u −
∑

x∈Mu,v

Wx,v . (5.6)

Here Wx,u is the indicator random variable for the event that the color chosen for {x, u} was in

D{u,v}. The lower bound overcounts the number of colors in D{u,v} that have been removed from

Fu ∩ Fv.

The base case of the induction (0 edges) is immediate. Assume that we are processing edge

{u, v}, and that all edges {x, y} earlier in the stream, when they were processed, had |Fx∩Fy| ≥ s2

4C .

For each x ∈Mu,v, the color χ{x,u} was drawn uniformly at random from some set Fx ∩ Fu, which

we assume satisfies |Fx ∩ Fu| ≥ s2

4C . For any subset H of D{x,u} of size ≥ s2

4C , if χ̂ is chosen u.a.r.

from H, then

Pr[χ̂ ∈ D{u,v}] ≤
|H ∩D{u,v}|
|H|

≤ 4C

s2
|Px,bx,{x,u} ∩D{u,v}|

Conditioned on the color choices of all earlier edges, we thus have EWx,u ≤ 4C
s2
|Px,bx,{x,u} ∩D{u,v}|.

Thus

E

 ∑
x∈Mu,v

Wx,u +
∑

x∈Mv,u

Wx,v

 ≤ 4C

s2

 ∑
x∈Mu,v

|Px,bx,{x,u} ∩D{u,v}|+
∑

x∈Mv,u

|Px,bx,{x,v} ∩D{u,v}|


≤ 4C

s2
· 2∆s

2

C2

3s2

2C
= 12

∆

C

s2

C
<

s2

8C
,

where the last inequality holds because ∆ ≤ C/128.
By the multiplicative formulation of Azuma’s inequality, Lemma 2.3.1,

Pr

 ∑
x∈Mu,v

Wx,u +
∑

x∈Mv,u

Wx,v ≥
s2

4C


≤ exp(−1

3

s2

4C
) ≤ exp

(
−32

3
log

n

δ

)
≤ δ

2n2
.

By a union bound over all edges, the probability that any edge {u, v} has |Fu ∩ Fv| ≤ s2

4C is ≤ δ/2.
We have shown that, in total, the probability of the algorithm aborting because Fu ∩ Fv = ∅ is

≤ δ.

194

Algorithm 5.5.3 can be generalized to produce O(∆2/t) edge colorings using Õ(n
√
t) bits of

space, by increasing the parameters C and s while ensuring that s2/C = Ω(log(n/δ)). Then as at

most s∆/C colors are removed from each free color tracker, it will be possible to store each free color

tracker using Õ(s∆/C) bits of space. However, further adjustment would be necessary to make

the algorithm use Õ(n
√
t) random bits. We suspect that picking (ε,O(s2/C))-wise independent

distributions will be sufficient. We did not attempt this possibly tedious proof, as the following

Theorem 5.5.8 already provides a color-space tradeoff for the edge arrival setting.

5.5.3 Deterministic online algorithm for edge arrivals

We did not find a way to directly derandomize the randomized algorithm for online edge arrival.

Instead, we created an algorithm that manages to partially solve the edge coloring problem, only

assigning a color to a ≥ 1/3 fraction of the incoming edges, and leaving the rest uncolored. Now,

say we run O(log∆) instances of this algorithm in parallel, each using a distinct palette of O(∆)

colors. When an edge arrives, we pass it to the first instance of the algorithm, and if it wasn’t

assigned a color, pass it to the second instance; and if that didn’t assign a color, pass it to the

third instance, and so on. All in all, only a ≤ 1/ poly(∆) fraction of the input stream will fail to be

colored by this process, and there are few enough of these leftover edges that one can store them

all and color them using O(∆) colors. This approach uses O(∆ log∆) colors in total.

The partial edge coloring algorithm itself uses an interesting trick. Each vertex v has an

associated permutation σv ∈ SO(∆), which is partitioned into a number of blocks Pv,1, Pv,2, . . . of

Õ(
√
∆) colors each. Whenever an edge {u, v} arrives, it must be colored using a color in the set

Pv,i∩Pu,j , where i and j depend on the degrees of vertices v and u at the time. Parameters are set

up so this set has size Ω(log n), and the algorithm knows which colors in Pv,i and Pu,j have been

used so far. We prove that, if the algorithm could preview the future of the stream, it could always

pick the “right” color in Pv,i ∩ Pu,j , and thereby find a valid edge coloring. On the other hand,

without being able to look at future edges, if one just greedily picks valid colors in Pv,i ∩ Pu,j that

don’t conflict with colors chosen earlier — assuming there are any — then the algorithm will color

at least a 1/3 fraction of the edges.

Handling multigraphs in online edge arrival. Both the randomized online edge arrival algo-

rithm and what was described so far of the deterministic algorithm will fail when faced with input

streams that repeat edges. But looking more closely, both can tolerate some amount of repeated

edges – a given edge e could be repeated up to Õ(
√
∆) times, as long as it doesn’t arrive too

frequently. Specifically, as long as, for a given endpoint x of e, the substream of edges incident on

x does not contain e more than Õ(1) times in any interval of Õ(
√
∆) edges. This is a consequence

of the way the edge arrival algorithms rotate between blocks of colors for each vertex.

195

On the other hand, the edges that would break the sketch, which repeat many times within the

last Õ(
√
∆) edges incident on a given vertex, are easy to detect using Õ(n

√
∆) space. All one must

do is keep track of the edges which recently arrived at a vertex, and detect duplicates.

To handle the “bad” type of repeated edges, we maintain O(log∆) modified instances of an

edge arrival algorithm. (We use the basic deterministic online edge arrival algorithm, but the same

argument would work for the randomized one.) The first instance processes all edges in the stream,

filtering out the edges which it detects to have repeated at least once. The repeated edges are sent

to the second instance, which filters out edges that it finds to have repeated twice, and sends those

to the third instance. In general, the ith instance will receive edges which have been seen Θ(2i)

times in the stream. (The exact condition is a bit more complicated.) The ith instance is also

modified to handle edges with high repetition rates, assigning batches of colors to each edge type

that it processes.

We now introduce a technical lemma which will be useful in the proof of Theorem 5.5.8.

Lemma 5.5.5. Let V be a set of size n, δ ∈ (0, 1), and let ∆ be a power of two, satisfying

∆ ≥ 256 log n
δ . Define C = 32∆, and let s be the least power of two which is ≥ 512

√
∆ log n

δ .

Let (σv)v∈V be randomly chosen permutations from an (ε, s)-wise independent family, where ε ≤
exp(−s2/C) ≤ (δ/n)1024. For i ∈ [C/s], v ∈ V , let Pv,i := σ[s(i− 1) + [s]].

We say that the permutations (σv)v∈V are good if, for all simple graphs H on V × [C/s] for

which, for any u,w ∈ V and i ∈ [C/s], there is at most one j for which edge {(u, i), (v, j)} is

in H, and the max degree of H is ≤ s∆/C; that the graph H can be list-edge colored where edge

{(u, i), (v, j)} may only use colors in Pu,i ∩ Pv,j.

The probability that the (σv)v∈V are good is ≥ 1− δ.

Proof of Lemma 5.5.5. We will prove this in two steps. First, define a specific Property U that the

(σv)v∈V should satisfy with probability ≥ 1− δ; second, prove that if this property holds, then any

graph H can be colored.

The permutations (σv)v∈V satisfy Property U if:

• For all pairs (u, i), (v, j) ∈ V × [C/s], with u ̸= v, we have |Pu,i ∩ Pv,i| ≥ s2

2C .

• For each (u, i) ∈ V × [C/s], S ⊆ (V \ {s})× [C/s] where |S| ≤ s∆/C and S includes no two

vertices (v, i), (u, j) with v = u, and all T ∈
(Pu,i

|S|−1

)
, there exists some (x, j) ∈ S for which

|Px,j ∩ T | < 1
10 |Px,j ∩ Pu,i|. (This is, in effect, a stronger version of Hall’s condition).

For the first part of Property U , it is straightforward to bound the probability that it does not

hold. For a given pair (u, i), (v, j) ∈ V × [C/s], u ̸= v, because the permutations are (ε, s)-wise

independent, the sets Pu,i and Pv,j are within ε-total-variation distance of being uniformly random

196

subsets of [C] of size s, we can apply a Chernoff bound (specifically, Lemma 2.3.3) for the number

of elements in Pu,i that lie in Pv,j :

Pr[|Pu,i ∩ Pv,j | ≤
1

2

s2

C
] ≤ exp(−1

8

s2

C
) + ε ≤ exp(−210 log(n/δ)) + ε ≤ δ

2n2
. (5.7)

(The additive factor ε accounts for the maximum difference in probabilities for this event between

the case where Pu,i is exactly uniform and the case where it is ε-far from such.)

For the second part, consider a specific combination (u, i, S, T), and fix Pu,i. Then the proba-

bility that this combination violates property U is:

Pr

 ∧
(x,j)∈S

{
|Px,j ∩ T | ≥

1

10
|Px,j ∩ Pu,i|

} ≤ ∏
(x,j)∈S

Pr
Px,j

[
|Px,j ∩ T | ≥

1

10
|Px,j ∩ Pu,i|

]
. (5.8)

since the Px,j ∈ S are all independent, since S contains at most one entry for each v ∈ V . Since

Px,j is a uniformly random subset [C], Px,j ∩ Pu,i is symmetrically distributed over Pu,i. Now let

T̂ be a uniformly random element of
(
Pu,i
s

)
, and define indicator random variables {Yk}k∈Pu,i

so

that Yk = 1 iff k ∈ T̂ ; these are negatively associated and E[Yk] = |S|−1
s . Thus, if we assume

|Px,j ∩ Pu,i| = h:

Pr
Px,j

[
|Px,j ∩ T | ≥

1

10
|Px,j ∩ Pu,i|

∣∣∣|Px,j ∩ Pu,i| = h

]
≤ Pr

T̂

[
|Px,j ∩ T̂ | ≥

1

10
h
∣∣∣|Px,j ∩ Pu,i| = h

]
+ ε

= Pr
{Yk}k∈Pu,i

 ∑
k∈Pu,i

Yk ≥
1

10
h
∣∣∣|Px,j ∩ Pu,i| = h|

+ ε

≤ exp

(
−2
(

1

10
− |S| − 1

s

)2

h

)
+ ε

≤ exp

(
−2
(

1

10
− ∆

C

)2

h

)
+ ε ≤ exp (−h/200) + ε . since C = 32∆

This bound is useful only if h is large enough. By the law of total probability, and using the bound

from Eq. 5.7 to handle the case where h is small:

Pr
Px,j

[
|Px,j ∩ T | ≥

1

10
|Px,j ∩ Pu,i|

]
≤ Pr

Px,j

[
|Px,j ∩ T | ≥

1

10
|Px,j ∩ Pu,i|

∣∣∣|Px,j ∩ Pu,i| ≥
s2

2C

]
Pr

[
|Px,j ∩ Pu,i| ≥

s2

2C

]
+

Pr

[
|Px,j ∩ Pu,i| ≤

s2

2C

]

197

≤ (exp

(
− s2

400C

)
+ ε) · 1 + (exp(− s2

8C
) + ε) ≤ 2 exp

(
− s2

400C

)
.

Substituting this result into Eq. 5.8 gives:

Pr

 ∧
(x,j)∈S

{
|Px,j ∩ T | ≥

1

10
|Px,j ∩ Pu,i

} ≤ 2|S| exp

(
−|S| s2

400C

)
.

Taking a union bound over all (u, i, S, T) tuples gives:

Pr[second part of Property U fails]

≤
∑

(u,i)∈V×[C/s]

s∆/C∑
k=1

∑
valid S with |S| = k

∑
T⊆(Pu,i

k−1
)

2k exp

(
−k s2

400C

)

≤ n ·
s∆/C∑
k=1

·
(
n− 1

k

)(
C

s

)k

·
(

s

k − 1

)
· 2k exp

(
−k s2

400C

)

≤ n
s∆/C∑
k=1

(
2nCs exp

(
− s2

400C

))k

≤ 2n · 2nCs exp
(
− s2

400C

)
for large enough s2/C

≤ 4n2 · (32n)2 exp(−2048

100
log(n/δ)) ≤ δ

2
. since s ≤ C = 32∆

Combining this with a union bound over Eq. 5.7 implies that Property U fails to hold with

probability ≤ δ.
For the second stage of the proof, we consider the following iterative process to color any graph

H satisfying the given conditions. Consider an arbitrary ordering v1, . . . , vn of the vertices in

V × [C/s]. For a given vertex vt, let A(vt) be the set of vertices in {v1, . . . , vt−1} which are adjacent

to (vt, i), and let B(vt, i) be the set of vertices in {vt+1, . . . , vn} which are adjacent to (vt, i). For

each z ∈ A(vt) ∪ B(vt), define Ut,vt,z to be the set of colors in Pvt ∩ Pz that were already used by

edges to vertices in A(vt) just after step t. The color assignment chosen will maintain the Invariant

W that |Ut,z,(vt′)
| ≤ 1

3 |Pz ∩ Pvt′ | for all t
′ > t and z ∈ A(vt′). In other words, that when it is time

to color the edges from a future vertex vt′ to A(vt′), only a ≤ 1/3 fraction of the initially possible

color options will have been used.

Invariant W automatically holds when t = 0, since no edges have been colored. Say the invariant

holds at time t − 1. Then we are guaranteed that |Ut−1,z,vt | ≤ 1
3 |Pz ∩ Pvt | for all z ∈ A(vt), and

want to find color assignments for the edges from A(vt) to z so that |Ut,z,vt | ≤ 1
3 |Pz ∩ Pvt | for all

198

z ∈ B(vt). To do this, we will first pick a set F ⊆ Pvt that satisfies:

∀x ∈ A(vt) : |(Px ∩ Pvt) \ Ut−1,x,vt \ F | ≥
1

10
|Px ∩ Pvt | (5.9)

∀x ∈ B(vt) : |(Py ∩ Pvt) \ F | ≤
1

3
|Py ∩ Pvt | . (5.10)

That such a set F exists follows by the probabilistic method; say F were chosen so that each

element of Pvt is included u.a.r with probability 7
10 . For i ∈ Pv,t, let Xi be the indicator random

variable for the event that i ∈ F . Then the probability of Eq. 5.9 is bounded by:

Pr

[
|(Px ∩ Pvt) \ Ut−1,x,vt \ F | ≥

1

10
|Px ∩ Pvt |

]
≤ Pr

[
|(Px ∩ Pvt) \ Ut−1,x,vt \ F | ≥

3

20
|(Px ∩ Pvt) \ Ut−1,x,vt |

]

(since |(Px ∩ Pvt) \ Ux,v| ≥ 2
3 |Px ∩ Pvt |)

≤ Pr

 ∑
i∈(Px∩Pvt)\Ut−1,x,vt

Xi ≥
17

20
|(Px ∩ Pvt) \ Ut−1,x,vt |


≤ exp

(
− 9

200
|(Px ∩ Pvt) \ Ut−1,x,vt |

)

(by the Chernoff bound, since E
∑

...Xi is
14
20 |(Px ∩ Pvt) \ Ut−1,x,vt |)

≤ exp

(
− 3

100
|Px ∩ Pvt |

)
since |(Px ∩ Pvt) \ Ut−1,x,vt | ≥

2

3
|Px ∩ Pvt |

≤ exp

(
− 3s2

200C

)
= exp

(
−3072

25
log(n/δ)

)
<

1

2n
.

And for Eq. 5.10:

Pr

[
|(Px ∩ Pvt) \ F | ≥

1

3
|Px ∩ Pvt |

]
= Pr

 ∑
i∈(Px∩Pvt)

Xi ≤
2

3
|Px ∩ Pv,t|


≤ exp

(
−2
(

7

10
− 2

3

)2

|Px ∩ Pv,t|

)

≤ exp

(
− 1

450
|Py ∩ Pv|

)
= exp

(
− s2

900C

)
= exp

(
−2048

225
log(n/δ)

)
<

1

2n
.

Applying a union bound for the complements of Eq. 5.10 and Eq. 5.9 over all applicable z, we find

that both conditions hold with positive probability, so a suitable F exists.

199

Now that F has been chosen, we will select the colors for the edges from vt to each x ∈ A(vt)
from the set (Px ∩ Pvt) \ Ut−1,x,vt \ F . Since no colors in F are chosen, for any z ∈ B(vt), Ut,z,vt

will not contain any element of F ; thus |Ut,z,vt | ≤ |(Px ∩ Pvt) \ F | ≤ 1
3 |Px ∩ Pvt |.

Construct the bipartite graph J between A(vt) and Pvt , where x ∈ A(vt) has an edge to each

of the colors in (Px ∩ Pvt) \ Ut−1,x,vt \ F . We claim there is an A(vt)-saturating matching M of J ;

given this matching, we assign to edge {x, vt} its matched color M(x). For all x ∈ A(vt), we will

have M(x) ∈ (Px ∩ Pvt) \ Ut−1,x,vt \ F ; since M(x) /∈ Ut−1,x,vt , the edge color for {x, vt} will not

have been used before by any edge adjacent to x. As the matching assigns a unique color to each

edge, the edge coloring constraint will also be satisfied for vt.

To prove there exists a matching M in J , we verify that Hall’s condition holds. For any subset

S of the vertices in A(vt), we want to show that∣∣∣∣∣⋃
x∈S

((Px ∩ Pvt) \ Ut−1,x,vt \ F)

∣∣∣∣∣ ≥ |S|
The construction of H ensures that A(vt) and all subsets thereof satisfy the conditions for the

second part of Property U. (Specifically, |A(vt)| ≤ s∆/C, and that for any b ∈ V there is at most

one j for which (b, j) ∈ A(v, t).) By this property, we are guaranteed that for all T ⊆ Pvt of size

k − 1, that there exists some x ∈ S for which |Px ∩ T | ≤ 1
10 |Px ∩ Pvt . If Hall’s condition does not

hold for S, then there must exist some T ⊆ Pv,t for which:⋃
x∈S

((Px ∩ Pvt) \ Ut−1,x,vt \ F) ⊆ T

=⇒ ∀x ∈ S : (Px ∩ Pvt) \ Ut−1,x,vt \ F ⊆ T

=⇒ ∀x ∈ S : (Px ∩ Pvt) \ Ut−1,x,vt \ F ⊆ T ∩ Px

=⇒ ∀x ∈ S : |(Px ∩ Pvt) \ Ut−1,x,vt \ F | ≤ |T ∩ Px|

=⇒ ∀x ∈ S :
1

10
|Px ∩ Pvt | ≤ |T ∩ Px| . by Eq. 5.9

But by the second part of Property U, there must exist an x ∈ S for which 1
10 |Px ∩Pvt | > |T ∩Px|;

this is a contradiction, so it follows that Hall’s condition does hold for S. Since Hall’s condition

holds for all S ⊆ A(vt), J will contain a matching, and step t will ensure Invariant W holds for

step t+ 1.

By induction, it follows that Invariant W holds for all t ∈ [n], and thus that the process to color

the edges of the graph will always work.

At the core of the algorithm used by Theorem 5.5.8 will be an algorithm for partial coloring of

input streams. We will prove that this inner algorithm Algorithm 5.5.4 works for a specific class of

edge arrival streams. These are categorized by a Property Z, which is closely linked to the way the

200

free color tracker (Listing 5.5.2) refreshes its pool of colors.

Definition 5.5.6. For each edge {u, v} that arrives at time t, let du,t and dv,t be the degrees of

u and v respectively in the multigraph formed by all stream edges up to t. The edges adjacent to

each x ∈ V are assigned to blocks depending on the degree of x after they were added; thus edge

{x, y} arriving at time t is assigned to block number bx,t :=
⌈
dx,t · C

s∆

⌉
. Note that bx,t ∈ [C/s]. The

stream satisfies Property Z when, for all v ∈ V , i ∈ [C/s], and w ∈ V \ {v}, the stream contains at

most one edge {v, w}, added at time t, for which bv,t = i.

Algorithm 5.5.4 Partial coloring algorithm: (1/3)-partial O(∆) edge coloring for graph edge
arrival streams satisfying Property Z, plus reference counting

Input: Stream of edge arrivals n-vertex graph G = (V,E).
Assume ∆ is a power of two

Initialize(ℓ,ξ,∆,C,(σv)v∈V , s, R):
Input ∆ is the maximum degree of the input graph stream
Input C the number of colors this sketch will use
Input s is block size parameter, and (σv)v∈V are s-wise almost independent permutations
Input R is a reference counted pool of edges

Each edge e ∈ R will have associated counter M
(ℓ)
e ∈ [2ℓ] and color class χ

(ℓ)
e ∈

{0, . . . ,
⌈
log3/2∆

(ℓ)
⌉
} × [C(ℓ)]

1: for v ∈ V do
2: Fv ← InitFreeTracker(C, s,∆, σv). ▷ Also referred to as: F

(ℓ,ξ)
v

Process(edge {x, y}) → Option〈color〉 ∈ {⊥} ∪ [C]
3: if Fx ∩ Fy ̸= ∅ then
4: Choose c ∈ Fx ∩ Fy arbitrarily
5: Fx.RemoveAndUpdate(c, {x, y}) ▷ This will increase {x, y}’s refcount in R
6: Fy.RemoveAndUpdate(c, {x, y})
7: χ

(ℓ)
{x,y} ← (ξ, c)

8: M
(ℓ)
{x,y} ← 1

9: return color c
10: else
11: return ⊥

Lemma 5.5.7. Algorithm 5.5.4 properly edge-colors a ≥ 1/3 fraction of the edges in its input

stream, if the permutations it is given are good according to Lemma 5.5.5, and the input stream

satisfies Property Z.

Proof of Lemma 5.5.7. Say that the input stream for Algorithm 5.5.4 satisfies Property Z. To each

edge {x, y}, arriving at time t, we can associate a set of possible colors Px,bx,t ∩ Py,by,t , where

Px,i := σx[(i− 1)s+ [s]] indicates the ith set of colors used by the free color tracker Fx. Of course,

201

as the algorithm progresses some of the colors in Px,bx,t∩Py,by,t may be used by other edges adjacent

to x and y; the color trackers Fx and Fy precisely record these.

Let H be the simple graph on V × [C/s] formed by mapping each edge {x, y} arriving in the

input stream at time t to the edge {(x, bx,t), (y, by,t)}. Because the stream satisfies Property Z, for

any u, i, v, there is at most one j for which {(u, i), (v, j)} is in H. Thus, by Lemma 5.5.5, with

probability ≥ 1 − δ over randomly chosen advice, the permutations (σv)v∈V are good, and there

exists an edge coloring χ of H where each edge {(x, i), (y, j)} is given a color from Px,i ∩Py,j . This

implies that, if the color chosen at Line 4 were to exactly match the color from χ at each step, it

would be possible to for the first layer to assign a color to every edge.

However, Line 4, when processing edge {x, y} at time t, chooses a color arbitrarily from the set

of available colors in Px,bx,t ∩ Py,by,t . As a result, the algorithm may select colors so that at some

point, a given edge has Fx ∩ Fy = ∅ on Line 3, and cannot be colored. We claim that nevertheless,

it will color a ≥ 1
3 fraction of all input edges. Consider any fixed input graph stream of length T

for Algorithm 5.5.4, whose edges form multiset E. Consider a run of this algorithm on the stream.

At each time t, let ρt : E 7→ [C] ∪ {⊥} indicate the partial coloring produced by the stream after

t edges were processed. Let χ : E 7→ [C] be the coloring produced by Lemma 5.5.5. Call an edge

e “good” at time t if ρt(e) = ⊥ and it is possible to assign color χ(e) to e. (In other words, there

is no edge f incident on one of e’s endpoints for which ρt−1(f) = χ(e).) Initially, all edges in E

are good. Each time t that the algorithm processes an edge {u, v}, it will either fail to color the

edge, or set ρt({u, v}) = c for some color c. If c = χ({u, v}), then the number of “good” edges will

be reduced by 1, because χ is a valid edge coloring. If c ̸= χ({u, v}), then the number of “good”

edges will be reduced by 3; {u, v} will no longer be good, and there are at most two edges f that

are incident to either u or v and have χ(f) = c. If the algorithm fails to color edge {u, v}, then this

means χ({u, v}) was not available (because some edge incident on u or v used that color); so in all

cases, after the algorithm processes an edge, it will no longer be “good”. Thus, at the end of the

stream, there will be no “good” edges remaining; and since the number of “good” edges is reduced

by at most 3 per edge that was colored, the number of colored edges must be at least |E|/3.

Finally, we state and prove the formal version of Theorem 5.5.8.

Theorem 5.5.8. There is a deterministic algorithm for online O(∆(log∆)2) edge coloring in edge

arrival streams for multigraphs, using O(n
√
∆(log n)2.5(log∆)3) bits of space, and an advice string

of Õ(n
√
∆) bits, which works for all inputs. (By picking a uniformly random advice string, the

same algorithm can alternatively be used as a robust algorithm with 1/ poly(n) error; the advice can

also be verified and computed in exponential time.)

Proof of Theorem 5.5.8. We claim that Algorithm 5.5.6 satisfies the conditions of the theorem.

This algorithm uses an advice string of length Õ(n
√
∆), for which we do not know of an efficient

202

polynomial time construction. δ ∈ (0, 1) is a parameter which gives, if the advice string is chosen

uniformly at random, an upper bound on the probability that the advice string does not work for

all possible inputs. If we ran this algorithm with a random advice string, it would be robust to

adversarially generated inputs, with failure probability ≤ δ.
Algorithm 5.5.6 runs O(log∆) instances of an inner algorithm, Algorithm 5.5.5, which is de-

signed to give correct edge colorings for graph streams with a specific low-repetition guarantee: that

for any vertex v ∈ V , if one considers the sequence of edges adjacent to v in stream order, and splits

them into O(
√

∆/ log n) contiguous lists, that no lists will include a given edge more than once. To

handle edges that are more commonly repeated, Algorithm 5.5.6 will keep track of all edges which,

if added, might violate the guarantee, and send them to another instance of Algorithm 5.5.5 which

handles graph streams where no contiguous lists of edges adjacent to a vertex includes a given edge

twice; and if an edge in the stream might violate that condition, the algorithm sends it to another

copy of Algorithm 5.5.5, and so on.

We will first prove that the inner algorithm, Algorithm 5.5.5, works. This algorithm runs

a number of instances of Algorithm 5.5.4, which perform a greedy partial coloring of the input

stream, with constraints on the set of colors that it can use for any edge, as per Lemma 5.5.5. This

greedy-coloring can be performed in O(n
√
∆) space, and by Lemma 5.5.7 is guaranteed to color

at least 1/3 of the edges in the input stream. By sending all edges which the greedy procedure

did not color to an independent greedy coloring instance, the number of uncolored edges can be

reduced further; after O(log∆) iterations of this, an O(1/∆) fraction of the input stream has not

been colored; this part of the stream can be stored entirely and colored with 2∆− 1 colors.

In Algorithm 5.5.5, the for loop at Line 8 sends the edge {x, y} being processed to each of the⌈
log3/2∆

(ℓ)
⌉
instances of Algorithm 5.5.4, until either one of them assigns a color to the edge, or all

the instances fail to color the edge. Since each instance is guaranteed to color a ≥ 1/3 fraction of the

edges it processes, only a (2/3)⌈log3/2 ∆
(ℓ)⌉ ≤ 1

∆(ℓ) fraction of the edges received by Algorithm 5.5.5

will reach Line 12 of the algorithm and be stored in D(ℓ); since there are only O(n) such edges,

storing them does not significantly affect the space usage of the algorithm. These edges will be

greedily colored using a fresh set of colors.

To handle general multigraphs, Algorithm 5.5.6 divides the stream into a series of levels, for

ℓ from 0 to log∆. The higher levels process very common edges, which are assigned blocks of 2ℓ

colors for layer ℓ. Each level uses an instance of Algorithm 5.5.5 to assign color blocks for the

edges it receives. If a copy e of a given edge {u, v} arrives, and the color block for {u, v} is not

full, then the e will be assigned the next available color in the block. The specific scheme, as we

shall show, ensures that every edge is either colored from an existing color block, or passed to an

instance of Algorithm 5.5.5; and in the latter case, ensures that Property Z holds for the stream

sent to Algorithm 5.5.5.

203

Algorithm 5.5.5 Inner algorithm: O(∆ log∆) edge coloring for graph edge arrival streams which
have certain substreams satisfying Property Z, plus reference counting

Input: Stream of edge arrivals n-vertex graph G = (V,E).
Assume ∆ is a power of two
Superscript (ℓ) indicates the level of the algorithm

Initialize(ℓ, ∆(ℓ), R):

Input ∆(ℓ) is the maximum degree of the input graph
Let C(ℓ) = 32∆(ℓ)

1: D(ℓ) ← ∅ be a set of O(n log n) “overflow” edges
2: if ∆(ℓ) ≥ 256 log(n/δ)) then ▷ Condition for Lemma 5.5.5 to apply
3: Let s(ℓ) satisfy constraints of Lemma 5.5.5

4: Advice: {σ(ℓ)v }v∈V are permutations over [C(ℓ)], “good” for Lemma 5.5.5

5: for each layer ξ ∈ [
⌈
log3/2∆

(ℓ)
⌉
] do

6: I(ℓ,ξ) ← Initialize(ℓ,ξ,∆,C,s,{σ(ℓ)v }v∈V ,R) from Algorithm 5.5.4

Process(edge {x, y}) → color ∈
[⌈
log3/2∆

(ℓ)
⌉]
×
[
C(ℓ)

]
7: if ∆(ℓ) ≥ 256 log(n/δ)) then

8: for ξ ∈
[⌈
log3/2∆

(ℓ)
⌉]

do

9: Let c← I(ℓ,ξ).Process({x, y}) from Algorithm 5.5.4
10: if c ̸= ⊥ then
11: return color (ξ, c)

12: D(ℓ) ← D(ℓ) ∪ {{x, y}}
13: Increase reference count for {x, y} in R
14: Greedily pick a color class c ∈ [C(ℓ)] not used by any edge in D(ℓ) adjacent to x or y

15: χ
(ℓ)
{x,y} ← (0, c)

16: M
(ℓ)
{x,y} ← 1

17: return color (0, c)

Algorithm 5.5.6 maintains a global reference counted pool R, which keeps track of every edge

{x, y} that arrives for some amount of time. Each level ℓ can provide references for the edge; {x, y}
will only be dropped from R if no levels have a reference. At level ℓ, we have two cases, depending

on how {x, y} was processed by Algorithm 5.5.5. If {x, y} was not colored by any layer ξ, it will

be stored in D(ℓ) for the rest of the stream, and any further copies of that edge will not be sent

by Algorithm 5.5.6 to the level ℓ instance of Algorithm 5.5.5. If {x, y} was successfully colored

by layer ξ, the edge will be recorded until both of the free color trackers F
(ℓ,ξ)
x and F

(ℓ,ξ)
y have

been refreshed. This only happens if the block numbers bx,t and by,t of {x, y} with respect to the

substream received by the layer ξ instance of Algorithm 5.5.4 have increased. Consequently, that

substream will satisfy Property Z – if Algorithm 5.5.6 receives a second copy of edge {x, y} at time

t′ while either bx,t′ = bx,t or by,t = by,t, because {x, y} will be still be in R, Algorithm 5.5.6 will not

204

Algorithm 5.5.6 Deterministic algorithm for O(∆(log∆)2) edge coloring for multigraph edge
arrival streams

Input: Stream of edge arrivals n-vertex graph G = (V,E)
Assume ∆ is a power of two

Initialize:
1: ▷ The pool R will be a set of “recent” edges for each layer in each level, including edges that

are either in D(ℓ) or have a reference from one of the F
(ℓ,ξ)
x

2: Let R← ∅ be a reference counted pool of edges.

3: Each edge e ∈ R will have, per level ℓ, one associated counter M
(ℓ)
e ∈ [0, 2ℓ] and color class

χ
(ℓ)
e ∈ {0, . . . ,

⌈
log3/2∆

(ℓ)
⌉
} × [C(ℓ)]. When an edge is added to the pool, set M

(ℓ)
e = 0 for all

layers.
4: for each level ℓ in 0, . . . , log∆ do
5: Define ∆(ℓ) = ∆/2ℓ

6: K(ℓ) ← Initialize(ℓ,∆(ℓ)) from Algorithm 5.5.5

Process(edge {x, y}) → color
7: for ℓ in 0, . . . , log∆ do

8: if {x, y} is in R and M
(ℓ)
{x,y} > 0 then

9: if M
(ℓ)
{x,y} = 2ℓ then

10: continue
11: else
12: M

(ℓ)
{x,y} ←M

(ℓ)
{x,y} + 1

13: Let (i, j)← χ
(ℓ)
{x,y}

14: return color
(
ℓ, i, (j − 1)2ℓ +M

(ℓ)
{x,y}

)
15: else
16: Let (ξ, c)← K(ℓ).Process({x, y}) for level ℓ algorithm
17: return color

(
ℓ, ξ, (c− 1)2ℓ + 1

)
send the second copy to the level ℓ instance of Algorithm 5.5.5.

We now check that the level ℓ instance of Algorithm 5.5.5 does not receive a graph stream of

degree more than ∆(ℓ). When a copy of an edge {u, v} arrives, the loop at Line 7 only continues

from level ℓ to to level ℓ + 1 if M
(ℓ)
{u,v} = 2ℓ was true. Thus, for an edge e to be processed by the

level ℓ instance of Algorithm 5.5.5, the edge e must have arrived at least 20 +21 . . .+2ℓ−1 = 2ℓ− 1

times before in the stream, and 2ℓ times in total, since the last time e was dropped from R. Since

the maximum degree of the graph is ∆, and an edge must be added ≥ 2ℓ times for each time that

it is sent to the level ℓ instance of Algorithm 5.5.5, the level ℓ instance will receive at most ∆/2ℓ

edges adjacent to any given vertex.

When ℓ = log∆ in the for loop, Line 10 will not be executed; because for M
(ℓ)
{x,y} to equal

2ℓ = ∆, this must be the ∆ + 1st copy of edge {x, y} to arrive. Thus Algorithm 5.5.6 will assign a

205

color to every edge in the stream.

The total space usage of Algorithm 5.5.6 is dominated by the sets D(ℓ), free color trackers

F
(ℓ,ξ)
v , and the pool R (along with its linked properties χ

(ℓ)
e ,M

(ℓ)
e , for each ℓ ∈ {0, . . . , log∆}.)

Over all levels ℓ, layers ξ, and vertices in V , there are O((log∆)2n) color trackers, each of which

uses O(s(ℓ) log n + log∆) = O(
√

∆ log(n/δ) log n) bits of space to store colors and O(log n)-bit

references to edges. Each D(ℓ) is guaranteed to contain O(n log n) edges, at most, and needs

O(n(log n)2) bits of space. Finally, the ℓth level references at most |D(ℓ)|+O(ns(ℓ) log∆) edges in

R, so in total R will have O(n log n + n
√

∆ log(n/δ) log∆) edges. Each each needs O(log n) bits

to identify, and there are O((log∆)2) bits of associated information in the (χ
(ℓ)
e ,M

(ℓ)
e)ℓ. Thus, in

total, Algorithm 5.5.6 uses:

O(n
√
∆ log(n/δ)(log∆)2 log n log(n∆)) .

bits of space.

If the advice (σ
(ℓ)
v)v∈V,ℓ∈{0,...,log∆} was chosen randomly using Lemma 5.7.1, then we would need

O(spoly(log∆, log n)) truly random bits per permutation for a level of accuracy (≤ 1/poly(n)

total variation variation distance from uniformity) under which the proof of Lemma 5.5.5 works.

At δ = 1/2, this is O(n
√
∆poly(log∆, log n) bits. Given exponential time, the advice can also be

computed on demand, since checking that Property U from the proof of Lemma 5.5.5 can be done

in exponential time.

5.6 A lower bound for deterministic edge coloring

Our last result is a lower bound on the space needed for deterministic online edge coloring algo-

rithms, which use β∆ colors, for a constant β < 2. It applies in the one sided bipartite vertex

arrival setting, and thus automatically gives a lower bound for general vertex and edge arrivals.

Let B be the “fixed” set of vertices, and A the “arriving” set of vertices. We prove the lower bound

by reducing a deterministic, ∆-player, one way, communication game to (deterministic, one-sided,

bipartite, vertex arrival) online edge coloring.

In this game, each player receives a set of edges to color, and must immediately output a coloring

for the edges, before sending a message to the next player. Say that there are only 2o(n) possible

messages. Each message corresponds to a collection of inputs which the player could have received.

One can show that each message “rules out” some of the colors for each vertex v in B, so that,

if the protocol is correct, future players cannot mark edges going to v with one of the ruled out

colors. Furthermore, there must be some message which has a large number of associated inputs,

and which rules out > β colors for each fixed vertex, on average. As this can happen for each of

206

the ∆ players, by the end of the protocol it is possible to have ruled out > β∆ colors per vertex,

on average, which contradicts the assumption that the algorithm uses at most β∆ colors. Thus,

there must be 2Ω(n) possible messages.

First, we prove a lemma counting the number of (∆, 1)-biregular6 graphs which are compatible

with an array of additional constraints on the colors of edges.

Lemma 5.6.1. Let B be a set of n vertices; let ∆ be an integer with ∆ | n, and let C ∈ [∆, 2∆−1]

be another integer. Define β := C/∆. Consider the case where (2− β)n ≥ 32C.

For each v ∈ B, say we have a nonempty set Sv ⊆ [C] of possible colors, where
∑

i∈B |Si| ≤ βn.
If G is a uniformly random (∆, 1)-biregular graph between a set A of size n/∆ and B, then the

probability p(n,∆, β) that G has a valid edge coloring where each edge (a, b) is given a color from

Sb is:

p(n,∆, β) ≤ exp(− 1

213
(2− β)3n) . (5.11)

Proof of Lemma 5.6.1. The graph G can be interpreted as a random partition of B into sets

P1, . . . , Pn/∆, where all sets Pi have size ∆. Note that P1 is a uniformly random subset of size

∆ in B, P2 is a uniformly random subset of size ∆ in B \ P1, and so on. For each i ∈ [n/∆], let

Ci be the event that there is a Pi-saturating matching in the bipartite graph between Pi and [C],

where each v ∈ P is adjacent to all c ∈ Sv. Let γ = 2− β. Then we have:

p(n,∆, β) ≤
⌈ 12γn/∆⌉∏

i=1

Pr[Ci|C1, . . . , Ci−1] . (5.12)

We will prove Eq. 5.11 by proving upper bounds on Pr[Ci|C1, . . . , Ci−1], for all i ∈ [
⌈
1
2γn/∆

⌉
], and

then applying Eq. 5.12.

By Markov’s inequality, the fraction of vertices in B for which |Sv| − 1 ≥ 1 is ≤ β − 1 = 1− γ,
so Prv∼B[|Sv| = 1] ≥ γ. For each i ∈ [n/∆], let Ti = B \

⋃
j<i Pj . Then for all i ≤

⌈
1
2γn/∆

⌉
:

|{v ∈ Ti : |Sv| = 1}|
|Ti|

≥ |{v ∈ B : |Sv| = 1}| −∆(i− 1)

|B| −∆i
≥ γn− (i− 1)∆

n−∆(i− 1)
≥
γn− 1

2γn

n− 1
2γn

≥ 1

2
γ .

Consequently, conditioned on P1, . . . , Pi−1, the set Pi will be drawn uniformly at random from a

set Ti of vertices for which at least a γ/2 fraction have singleton color sets (have |Sv| = 1).

For a given i, we remark that if Pi contains two vertices v, w for which |Sv| = |Sw| = 1 and

Sv = Sw, then it is not possible to match the vertices in Pi to colors, as v and w would conflict.

Let us bound the probability that this occurs. Let n̂ = |Ti|; note that this is ≥ n/2. To make the

distribution of singleton sets drawn from {Sv}v∈Ti appear more uniform, we construct C disjoint sets

6Bipartite graph on A ⊔B where vertices in A have degree ∆, and vertices in B have degree 1.

207

L1, . . . , LC in Ti, so that for each Li, the associated color sets are all a singleton |
⋃

j∈Li
Sj | = 1; and

for which |Li| ≥ γn̂/4C. (If each singleton color set were equally likely, we could get |Li| ≥ γn̂/2C
– but it is possible that {1} is rare, while {2} more common than average. One way to construct

the L1, . . . , LC is by iteratively removing sets of γn̂/4C vertices from Ti whose associated color sets

are all the same singleton set.)

For each j ∈ Ti, let Xj be the indicator random variable for the event that j ∈ Pi. For each

k ∈ [C], let Yk =
∑

j∈Lk
Xj . Since the random variables {Xj}j∈Ti are negatively associated, sums

of disjoint sets of them, the {Yk}k∈[C], are also negatively associated. (See Definition 2.3.2.) We

have:

Pr[Pi has no two elements from same Lk]

≤ Pr[
∧

k∈[C]

{Yk ≤ 1}]

≤
∏
k∈[C]

Pr[Yk ≤ 1] . since negative association =⇒ negative orthant dependence

We calculate Pr[Yk ≤ 1] exactly, and then prove an upper bound on it.

Pr[Yk ≤ 1] =

(n̂−|Lk|
∆

)
+ |Lk|

(n̂−|Lk|
∆−1

)(
n̂
∆

)
=

n̂−|Lk|−∆+1
∆

(n̂−|Lk|
∆−1

)
+ |Lk|

(n̂−|Lk|
∆−1

)
n̂
∆

(
n̂−1
∆−1

)
=

n̂−|Lk|−∆+1
∆ + |Lk|
n̂/∆

·
(n̂−|Lk|

∆−1

)(
n̂−1
∆−1

)
≤

n̂−|Lk|−∆+1
∆ + |Lk|
n̂/∆

·
(
n̂− |Lk|
n̂− 1

)∆−1

since

(
a

c

)
/

(
b

c

)
≤ (a/b)c if c ≤ a ≤ b

=

(
1 +
|Lk| − 1

n̂
(∆− 1)

)(
1− |Lk| − 1

n̂− 1

)∆−1

(The next two inequalities hold because 1− x ≤ exp(x) and ln(1 + x) ≤ x− x2/4 for x ≤ 1.)

≤ exp

(
ln

(
1 +
|Lk| − 1

n̂
(∆− 1)

)
− |Lk| − 1

n̂− 1
(∆− 1)

)
≤ exp

(
|Lk| − 1

n̂
(∆− 1)− 1

4

(
|Lk| − 1

n̂
(∆− 1)

)2

− |Lk| − 1

n̂− 1
(∆− 1)

)

≤ exp

(
−(|Lk| − 1)(∆− 1)

n̂(n̂− 1)
− 1

4

(
|Lk| − 1

n̂
(∆− 1)

)2
)

≤ exp

(
−1

4

γ2

210

)
= exp(−γ2/212) .

208

For the last inequality, we used the fact that (|Lk|−1)(∆−1)/n̂ ≥ (γn̂/4C−1)(∆−1)/n̂ ≥ γ/32C.
Having bounded Pr[Yk ≤ 1], it follows that:

p(n,∆, β) ≤
⌈ 12γn/∆⌉∏

i=1

Pr[Ci|C1, . . . , Ci−1] ≤
(
exp

(
−γ2/212

)C)⌈ 12γn/∆⌉
≤ exp

(
−γ2/212 · C ·

⌈
1

2
γn/∆

⌉)
≤ exp(−γ3n/213) .

Theorem 5.6.2. For all β ∈ (1, 2), and integers n,∆ satisfying ∆ ≤ n(2 − β)/(64β), every

deterministic online streaming algorithm for edge-coloring that uses β∆ colors requires Ω((2−β)3n)
bits of space. In particular, (2∆− 1)-edge-coloring requires Ω(n/∆3) space.

Proof of Theorem 5.6.2. Say we have an algorithm A to provide an online β∆-edge-coloring of an

input stream, presented in one-sided vertex arrival order, using S bits of space. We assume that

∆|n; if this is not the case, we can reduce n to the nearest multiple of ∆, weakening our final

lower bound by at most a factor of 2. With the algorithm, we can implement a protocol for a

∆-player one-way communication game in which each message uses ≤ S bits. We will then prove

a communication lower bound for this game.

Specifically, let P1, . . . , P∆ be the players of the game. Let A1, . . . , A∆ and B be sets of vertices,

where for each i ∈ [∆], |Ai| = n/∆, and |B| = n. For each i ∈ [∆], the player Pi is given a (∆, 1)-

biregular graph Gi from Ai to B. Player P1 starts the communication game by outputing an edge

coloring χ1 of G1, using colors in [β∆]; and then it sends a message m1 to Player P2. For each

i ∈ {2, . . . ,∆}, the player Pi will receive a message mi−1 from its predecessor, output an edge

coloring χi of G1 which is compatible with the edge colorings χ1, . . . , χi−1 made by the earlier

players, and then (if i < ∆) send a message mi to the next player.

The conversion from an algorithm A to a protocol for this game is straightforward; P1 initializes

an instance A of A, uses it to process G1 in arbitrary order, and reports the colors the algorithm

output; then it encodes the state of the instance A as an S-bit message m1. P2 receives this

message, and uses it to continue running the instance A, this time having it process G2; P2 outputs

the results, and sends the new state of A to P3 as m2. The players continue in this way until P∆

produces output.

For each i ∈ {1, . . . ,∆ − 1}, and message mi, we define Smi = (Smi,v)v∈B. Here Smi,v is the

set of all colors which players P1, . . . , Pi could have assigned to edges incident on v for executions

of the protocol in which Pi sent message mi. If player Pi+1 receives message mi, the coloring χi+1

that it outputs must be disjoint from Smi ; specifically, if we view χi+1 as a vector in [β∆]B whose

vth entry gives the color assigned to the edge incident to vertex v, then ∀v ∈ B : χi+1,v /∈ Smi,v.

If this were not the case, and there was a vertex x for which χi+1,x ∈ Smi,x, then there would be

209

an execution of the protocol on which some player Pj output color χi+1,x for an edge incident on

x, later Pi sent message mi, and now Pi+1’s assignment of χi+1,x to the edge incident on x violates

the edge coloring constraint.

Let p(n,∆, β) be the probability from Lemma 5.6.1. We claim that there exists an input for

which some player must send a message with more than log(1/p(n,∆, β)) bits. If this is not the

case, then we shall construct an input on which the protocol must give an incorrect output, a

contradiction.

LetM1 be the set of all messages that player P1 can send. Let H be chosen uniformly at random

from the set of (∆, 1)-regular bipartite graphs from A1 to B, and let m1(H) be the message P1

would send if G1 = H. Then, if for all m ∈M1, we were to have
∑

v∈B |Smi,v| ≤ βn,

1 =
∑

m∈M1

Pr[m = m1(H)] ≤ |M1|p(n,∆, β) .

But since we have assumed messages in M1 need < log(1/p(n,∆, β)) bits, and hence |M1| <
1/p(n,∆, β), the above equation would imply 1 < 1; thus there must be some m⋆

1 ∈ M1 for which∑
v∈B Smi,v ≥ βn. Let G1 be the set of graphs for which H ∈ G1 ⇐⇒ m1(H) = m⋆

1; then on being

given any graph in G1, player P1 will output m⋆
1.

We will now iterate over i ∈ {2, . . . ,∆− 1} and build a sequence of messages m⋆
1,m

⋆
2, . . . ,m

⋆
∆,

along with sets of input graphs G1, . . . ,G∆−1 on which the protocol will send these messages. For

each i ∈ [∆], define Tm,i,i = (Tv,m,i)v∈B, where Tv,m,i := Sm \ Sm⋆
i−1,i

. Any coloring χi that Pi

outputs which is compatible with all inputs leading tom⋆
i will satisfy χi,v ∈ Tv,m,i. (If χi,v ∈ Sm⋆

i−1,i
,

then as noted above there is a set of inputs where this will violate the edge coloring constraint for

v.) As argued for M1, there must be some message m⋆
i ∈Mi for which

∑
v∈B |Tv,m,i| ≥ βn.

Finally, for each v ∈ B, define Rv = [β∆] \ Sm⋆
∆−1,v

. Since Sm⋆
∆−1,v

= ⊔∆−1
i=1 Tv,m⋆

i ,i
we will have

|Rv| ≤ β∆ − β(∆ − 1) = β. On receiving m⋆
∆−1, player P∆ can only assign edge colors so that

edges incident on v use colors in Rv; for any other color, there is a input which uses it and which

makes P∆−1 send m⋆
∆−1. If G∆ were chosen uniformly at random from its set of possible values,

then the probability that G∆ has an edge coloring compatible with {Rv}v∈m is ≤ p(n,∆, β). Since
this is < 1, there must exist a specific graph G†

∆ on which the protocol uses a color not in Rv for

some v ∈ B. We have thus shown that if the protocol always uses fewer than log(1/p(n,∆, β)) bits

for its messages, it will give incorrect outputs for some input.

We conclude:

S ≥ log
1

p(n,∆, β)
= Ω((2− β)3n) .

210

Remark 5.6.3. In some ways, the proof of Theorem 5.6.2 is similar to the deterministic lower

bound proof for MissingItemFinding, Theorem 3.5.1; it also has, at its core, an iterated counting

argument (specifically Lemma 3.3.2), like Lemma 5.6.1. However, here the lower bound appears

rather weak; this may be a consequence of the way in which the proof of Theorem 5.6.2 does not

use the fact that later players, like P∆, only have a limited amount of information about all the

preceding players; the proof would still hold if P∆ exactly knew the messages from all players

P1, . . . , P∆−1, which is an unrealistic assumption.

5.7 Details of constructing random permutations

By [Mor13] plus some algebra, for any ε > 0, a sequence of O
(
d3 + d ln(1ε)

)
Thorp shuffle steps

will produce a permutation on [2d] whose distribution has total variation distance at most ε away

from the uniform distribution.7

Lemma 5.7.1 (Random permutations through switching networks). For any C which is a power

of 2, there is an explicit construction of an (ε, s)-wise independent random permutation, using r =

O(s(logC)4 log 1
ε) bits. Furthermore, we can evaluate σ(i) and σ−1(i) in O(s(logC)4 log 1

ε logC)

time.

Proof of Lemma 5.7.1. Let k = O(d3 + d ln(1/ε)) be the constant for which k Thorp shuffle steps

would permute [C] = [2d] within total variation distance of ε of the uniform distribution over

permutations on [2d].

The switching network N corresponding to the k Thorp shuffle steps has depth k and uses

exactly kC/2 gates. Assign each gate a unique number in [kC/2]. Then given a uniformly random

bit vector x ∈ {0, 1}kC/2, we evaluate the switching network by having the gate numbered i switch

its inputs iff xi = 1. A key property of switching networks is that one can evaluate their action on

a single input by only evaluating one gate per layer – for this network, only k gates. Reversing the

order in which the layers are applied will produce the inverse of the original permutation. Thus,

one can evaluate N (i) by reading only k entries of x, and similarly for N−1(i).

Now, say the bits of x are the output of a hash function drawn from a ks-wise independent hash

family. (For example, using a family of [WC81], let h = ⌈log2 kC/2⌉, take the family of random

polynomials of degree ks − 1 inside F2h , and output the least bit of the output. The polynomial

coefficients can be encoded using ksh = O(ks log(C)) bits, and the polynomials evaluated at any

point in O(ksh2) = O(ks(logC)2) time.)

7While there exist more efficient switching networks that also permute sets whose sizes are not powers of two, we
use the result of [Mor13] here because it is simple to work with. The results claimed by [Czu15] might be better, but
we could not find the full version of that paper.

211

If π is a uniformly random permutation on [C], then for all lists of distinct h1, . . . , hs, and all

lists of distinct j1, . . . , js, we have

Pr[
∧
i∈[s]

π(hi) = ji] =
1∏

i∈[s](C − i+ 1)
.

Now, let f : {0, 1}kC/2 × [C] 7→ [C]k be the function which maps the gate-controlling vector

x ∈ {0, 1}kC/2 and an input a ∈ [C] to the path b1, . . . , bk that a takes through the switching

network N if its gates are configured according to x. The last node of this path, f(x, a)k is

the output of N given x and a. Each path P = (a, b1, . . . , bk) through the switching network

corresponds to a restriction RP ∈ {0, 1, ⋆}kC/2 which has value ⋆ on gates not touched by the path,

and for each gate traversed by the path assigns either 0 or 1 depending on whether a straight or

switched configuration of the gate is compatible with P . Since all paths through the network have

length k, RP only sets k coordinates. Now, for each pair (a, b) ∈ [C]2, let

Fa,b = {RP : P = (a, b1, . . . , bk−1, b) is a possible path} .

Then, for lists (h1, . . . , hs), (j1, . . . , js), define

Kh1,...,hs,j1,...,js = {R ∈ {0, 1, ⋆}kC/2 : ∀i ∈ [k], ∃T ∈ Fhi,jiwhere R is a minimal refinement of T} ,

i.e., the set of minimal restrictions for vectors in {0, 1}kC/2 which completely determine the paths

through the switching network of inputs (h1, . . . , hs).

Now, let Y ∈ {0, 1}kC/2 be ks-wise independent, and X ∈ {0, 1}kC/2 be fully independent. We

have:

Pr[
∧
i∈[s]

f(Y, hi)k = ji] =
∑

R∈Kh1,...,hs,j1,...,js

Pr[Y compatible with R]

=
∑

R∈Kh1,...,hs,j1,...,js

Pr[X compatible with R]

= Pr[
∧
i∈[s]

f(X,hi)k = ji] ,

where the second inequality follows because each restriction R ∈ Kh1,...,hs,j1,...,js only constrains

sk/2 coordinates corresponding to the gates on the paths in the switching network from h1, . . . , hs

to j1, . . . , js that it fixes.

Thus,

1

2

∑
distinct b1, . . . , bk in [C],

∣∣∣∣∣∣Pr
∧
i∈[s]

{f(X,hi)k = ji}

− 1∏
i∈[s](C − i+ 1)

∣∣∣∣∣∣ =
212

1

2

∑
distinct b1, . . . , bk in [C],

∣∣∣∣∣∣Pr
∧
i∈[s]

{f(Y, hi)k = ji}

− 1∏
i∈[s](C − i+ 1)

∣∣∣∣∣∣ ≤ ε ,
which proves that the switching network evaluated on X produces outputs that are (ε, s)-wise

independent.

5.8 Conclusion

Several of the algorithms in this chapter rely on the availability of an oracle random string, in

order to avoid the space penalty of explicitly storing many independent random permutations. In

practice, where we optimistically assume that cryptographic pseudo-random number generators

exist, it is straightforward to generate the bits of the oracle random string on demand, ensuring

that computationally bounded systems essentially cannot produce hard inputs for the algorithm.

The randomized algorithms Algorithm 5.4.1 and Algorithm 5.5.3 both use the same idea of

trying and discarding (making unavailable for future use), either immediately or periodically, a set

of fresh colors chosen by iterating over a random permutation. This construction has the downside

that, since many colors are discarded, the total number C of colors that the algorithm might use

must be large. Instead of discarding colors, a possibly more efficient approach is to retain, for

each vertex, a pool of all the colors that were tried but not used; this ensures that colors are only

removed from consideration when they have been used. The downside of retaining unused colors is

an increased space usage that is harder to prove upper bounds for. We suspect that the following

two algorithms, Algorithm 5.8.1 and Algorithm 5.8.2, for one-sided vertex arrival, and edge arrival

streams, will use only Õ(n) and Õ(n
√
∆) bits of space with high probability, but have not been

able to prove this. The second algorithm in particular is rather similar to an online edge coloring

algorithm conjectured to use ∆ + O(
√
∆ log n) colors by [BMN92], in which each edge is assigned

a uniformly random color from the set of colors that no edges incident to its endpoints have used.

213

Algorithm 5.8.1 Randomized algorithm for (2∆−1)-edge coloring in the one-sided vertex arrival
model, conjectured to use O(n log∆) space w.h.p.

Input: Stream of one-sided vertex arrivals on n-vertex graph G = (A ⊔B).
Let C := 2∆− 1.

Initialize():
1: for z ∈ B do
2: σz ← uniformly randomly chosen permutation over [C]
3: hz ← 1
4: Fz ← ∅

Process(vertex a ∈ A, adjacent edges Ma)
5: S ← ∅
6: for {a, b} ∈Ma, in random order do
7: while Fb ⊆ S do
8: Fb ← Fb ∪ σb[hb]
9: hb ← hb + 1

10: Let c be random color from Fb \ S
11: Assign color c to edge {a, b}
12: Fb ← Fb \ {c}
13: S ← S ∪ {c}

Algorithm 5.8.2 Randomized algorithm for (2∆ − 1)-edge coloring in the edge arrival model,
conjectured to use O(n

√
∆ log∆) space w.h.p.

Input: Stream of edge arrivals on n-vertex graph G = (V,E).
Let C := 2∆− 1.

Initialize:
1: for v ∈ B do
2: σv ← uniformly randomly chosen permutation over [C]
3: hv ← 1
4: Fv ← ∅

Process(edge {x, y}):
5: while Fx ∩ Fy = ∅ do
6: Fx ← Fx ∪ σx[hy]
7: hx ← hx + 1
8: Fy ← Fy ∪ σy[hy]
9: hy ← hy + 1

10: Let c be random color from Fx ∩ Fy

11: Assign color c to edge {x, y}
12: Fx ← Fx \ {c}
13: Fy ← Fy \ {c}
14: S ← ∅

214

Bibliography

[AA20] Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆+1) vertex coloring.

In Approximation, Randomization, and Combinatorial Optimization. Algorithms and

Techniques, APPROX/RANDOM 2020, August 17-19, 2020, Virtual Conference, vol-

ume 176 of LIPIcs, pages 6:1–6:22, 2020. 116, 118, 119

[ABJ+22] Miklós Ajtai, Vladimir Braverman, T.S. Jayram, Sandeep Silwal, Alec Sun, David P.

Woodruff, and Samson Zhou. The white-box adversarial data stream model. In Proc.

41st ACM Symposium on Principles of Database Systems, page 15–27, 2022. 4, 13,

15, 18, 75

[ACGS23] Sepehr Assadi, Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Coloring in

graph streams via deterministic and adversarially robust algorithms. In Proc. 42nd

ACM Symposium on Principles of Database Systems, page 141–153, 2023. iii

[ACK19] Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+ 1) vertex

coloring. In Proc. 30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

767–786, 2019. 4, 28, 112, 113, 115, 116, 118, 127

[ACKP19] Amir Abboud, Keren Censor-Hillel, Seri Khoury, and Ami Paz. Smaller cuts, higher

lower bounds. CoRR, abs/1901.01630, 2019. 113, 118, 119

[ACS22] Sepehr Assadi, Andrew Chen, and Glenn Sun. Deterministic graph coloring in the

streaming model. In Proc. 54th Annual ACM Symposium on the Theory of Computing,

pages 261—-274, 2022. 5, 28, 113, 114, 115, 116, 119, 131, 151, 154, 155, 156

[ACSS21] Idan Attias, Edith Cohen, Moshe Shechner, and Uri Stemmer. A framework for

adversarial streaming via differential privacy and difference estimators. CoRR,

abs/2107.14527, 2021. 13

[AGM12] Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure

via linear measurements. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 459–467, 2012. 118

215

[AKM22] Sepehr Assadi, Pankaj Kumar, and Parth Mittal. Brooks’ theorem in graph streams:

a single-pass semi-streaming algorithm for ∆-coloring. In Proc. 54th Annual ACM

Symposium on the Theory of Computing, pages 234–247, 2022. 4, 113, 119

[AL12] Noga Alon and Shachar Lovett. Almost k-wise vs. k-wise independent permutations,

and uniformity for general group actions. In Proc. 16th International Workshop on

Randomization and Approximation Techniques in Computer Science, pages 350–361.

Springer, 2012. 167

[AMS99] Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating

the frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999. Preliminary

version in Proc. 28th Annual ACM Symposium on the Theory of Computing , pages

20–29, 1996. 12

[AMSZ03] Gagan Aggarwal, Rajeev Motwani, Devavrat Shah, and An Zhu. Switch scheduling

via randomized edge coloring. In 44th Annual IEEE Symposium on Foundations of

Computer Science (FOCS), 2003,, pages 502–512. IEEE, 2003. 159, 160, 164

[ASZZ22] Mohammad Ansari, Mohammad Saneian, and Hamid Zarrabi-Zadeh. Simple Stream-

ing Algorithms for Edge Coloring. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg,

and Grzegorz Herman, editors, 30th Annual European Symposium on Algorithms (ESA

2022), volume 244 of Leibniz International Proceedings in Informatics (LIPIcs), pages

8:1–8:4, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

6, 160, 161, 162, 164, 166

[BBMU21] Anup Bhattacharya, Arijit Bishnu, Gopinath Mishra, and Anannya Upasana. Even

the easiest(?) graph coloring problem is not easy in streaming! In 12th Innovations

in Theoretical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual

Conference, volume 185 of LIPIcs, pages 15:1–15:19, 2021. 118, 119

[BCG20] Suman K. Bera, Amit Chakrabarti, and Prantar Ghosh. Graph coloring via degeneracy

in streaming and other space-conscious models. In 47th International Colloquium on

Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020, Saarbrücken,

Germany (Virtual Conference), volume 168 of LIPIcs, pages 11:1–11:21, 2020. 113,

116, 118, 119, 128

[BCHN18] Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon

Nanongkai. Dynamic algorithms for graph coloring. In Proceedings of the Twenty-

Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Or-

leans, LA, USA, January 7-10, 2018, pages 1–20. SIAM, 2018. 116

216

[BDH+19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Marina Knit-

tel, and Hamed Saleh. Streaming and massively parallel algorithms for edge color-

ing. In 27th Annual European Symposium on Algorithms, ESA 2019, September 9-11,

2019, Munich/Garching, Germany, volume 144 of LIPIcs, pages 15:1–15:14. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2019. 6, 163, 166

[BEEO22] Omri Ben-Eliezer, Talya Eden, and Krzysztof Onak. Adversarially robust streaming

via dense-sparse trade-offs. In Symposium on Simplicity in Algorithms (SOSA), pages

214–227, 2022. 115

[BG18] Suman Kalyan Bera and Prantar Ghosh. Coloring in graph streams. CoRR,

abs/1807.07640, 2018. 116, 118, 127

[BGW21] Sayan Bhattacharya, Fabrizio Grandoni, and David Wajc. Online edge coloring algo-

rithms via the nibble method. In Proceedings of the 2021 ACM-SIAM Symposium on

Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages

2830–2842. SIAM, 2021. 160, 164

[BHM+21] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep

Silwal, and Samson Zhou. Adversarial robustness of streaming algorithms through

importance sampling. CoRR, abs/2106.14952, 2021. 117, 118

[BJWY20] Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A frame-

work for adversarially robust streaming algorithms. In Proc. 39th ACM Symposium

on Principles of Database Systems, page 63–80, 2020. 2, 10, 13, 18, 118, 127

[BKKS23] Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Shay Sapir.

Lower bounds for pseudo-deterministic counting in a stream. arXiv preprint

arXiv:2303.16287, 2023. 14

[BKM20] Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic dis-

tributed coloring with small bandwidth. In Yuval Emek and Christian Cachin, editors,

Proc. 39th ACM Symposium on Principles of Distributed Computing, pages 243–252.

ACM, 2020. 116, 142

[BMM12] Bahman Bahmani, Aranyak Mehta, and Rajeev Motwani. Online graph edge-coloring

in the random-order arrival model. Theory of Computing, 8(1):567–595, 2012. 160,

164

[BMN92] Amotz Bar-Noy, Rajeev Motwani, and Joseph Naor. The greedy algorithm is optimal

for on-line edge coloring. Information Processing Letters, 44(5):251–253, 1992. 5, 159,

164, 165, 213

217

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for

designing efficient protocols. In Proc. 1st ACM Conference on Computer and Com-

munications Security, pages 62–73, 1993. 15

[BS23] Soheil Behnezhad and Mohammad Saneian. Streaming edge coloring with asymptoti-

cally optimal colors. arXiv preprint arXiv:2305.01714, 2023. 166

[BSS22] Sayan Bhattacharya, Thatchaphol Saranurak, and Pattara Sukprasert. Simple dy-

namic spanners with near-optimal recourse against an adaptive adversary. arXiv

preprint arXiv:2207.04954, 2022. 13

[BY20] Omri Ben-Eliezer and Eylon Yogev. The adversarial robustness of sampling. In Proc.

39th ACM Symposium on Principles of Database Systems, pages 49–62. ACM, 2020.

118

[CAD+18] Anirban Chakraborty, Manaar Alam, Vishal Dey, Anupam Chattopadhyay, and Deb-

deep Mukhopadhyay. Adversarial attacks and defences: A survey. arXiv preprint

arXiv:1810.00069, 2018. 14

[CD07] Charles Colbourne and Jeffrey Dinitz. Handbook of combinatorial designs. CRC press

Boca Raton, FL, 2007. 38

[CGS22] Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring

for graph streams. In Proc. 13th Conference on Innovations in Theoretical Computer

Science, pages 37:1–37:23, 2022. iii, 157

[CKL+24] Melanie Cambus, Fabian Kuhn, Etna Lindy, Shreyas Pai, and Jara Uitto. A

(3+epsilon)-approximate correlation clustering algorithm in dynamic streams. In Pro-

ceedings of the 2024 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),

pages 2861–2880. SIAM, 2024. 13

[CL21] Moses Charikar and Paul Liu. Improved algorithms for edge colouring in the W-

streaming model. In 4th Symposium on Simplicity in Algorithms, SOSA 2021, Virtual

Conference, January 11-12, 2021, pages 181–183. SIAM, 2021. 6, 160, 161, 162, 166,

169

[CLN+22] Edith Cohen, Xin Lyu, Jelani Nelson, Tamás Sarlós, Moshe Shechner, and Uri Stem-

mer. On the robustness of countsketch to adaptive inputs. In International Conference

on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, vol-

ume 162 of Proceedings of Machine Learning Research, pages 4112–4140. PMLR, 2022.

14

218

[CLP18] Yi-Jun Chang, Wenzheng Li, and Seth Pettie. An optimal distributed (∆+1)-coloring

algorithm? In Ilias Diakonikolas, David Kempe, and Monika Henzinger, editors,

Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing,

STOC 2018, Los Angeles, CA, USA, June 25-29, 2018, pages 445–456. ACM, 2018.

116

[CMZ23] Shiri Chechik, Doron Mukhtar, and Tianyi Zhang. Streaming edge coloring with

subquadratic palette size. arXiv preprint arXiv:2305.07090, 2023. 166, 167

[CNSS23] Edith Cohen, Jelani Nelson, Tamás Sarlós, and Uri Stemmer. Tricking the hashing

trick: A tight lower bound on the robustness of countsketch to adaptive inputs. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pages 7235–

7243, 2023. 14

[Cor23] Graham Cormode. Applications of sketching and pathways to impact. In Proc. 42nd

ACM Symposium on Principles of Database Systems, pages 5–10, 2023. 2

[CPS19] David Clayton, Christopher Patton, and Thomas Shrimpton. Probabilistic data struc-

tures in adversarial environments. In Proceedings of the 2019 ACM SIGSAC Confer-

ence on Computer and Communications Security, page 1317–1334, 2019. 14

[CPW19] Ilan Reuven Cohen, Binghui Peng, and David Wajc. Tight bounds for online edge

coloring. In 60th IEEE Annual Symposium on Foundations of Computer Science,

FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 1–25. IEEE

Computer Society, 2019. 160, 161, 164

[CS23] Amit Chakrabarti and Manuel Stoeckl. When a random tape is not enough:

lower bounds for a problem in adversarially robust streaming. arXiv preprint

arXiv:2310.03634, 2023. iii

[CW79] Larry Carter and Mark N. Wegman. Universal classes of hash functions. J. Comput.

Syst. Sci., 18(2):143–154, 1979. 129

[Czu15] Artur Czumaj. Random permutations using switching networks. In Proc. 47th Annual

ACM Symposium on the Theory of Computing, pages 703–712, 2015. 211

[DEMR10] Camil Demetrescu, Bruno Escoffier, Gabriel Moruz, and Andrea Ribichini. Adapt-

ing parallel algorithms to the w-stream model, with applications to graph problems.

Theoretical Computer Science, 411(44):3994–4004, 2010. 166

[DFR06] Camil Demetrescu, Irene Finocchi, and Andrea Ribichini. Trading off space for passes

in graph streaming problems. In Proceedings of the Seventeenth Annual ACM-SIAM

219

Symposium on Discrete Algorithms, SODA 2006, pages 714–723. ACM Press, 2006.

166

[DHP+22] Ben Davis, Hamed Hatami, William Pires, Ran Tao, and Hamza Usmani. On public-

coin zero-error randomized communication complexity. Information Processing Let-

ters, 178:106293, 2022. 12

[EFKM10] Martin R. Ehmsen, Lene M. Favrholdt, Jens S. Kohrt, and Rodica Mihai. Comparing

first-fit and next-fit for online edge coloring. Theor. Comput. Sci., 411(16-18):1734–

1741, 2010. 166

[EJ01] Thomas Erlebach and Klaus Jansen. The complexity of path coloring and call schedul-

ing. Theoretical Computer Science, 255(1):33–50, 2001. 159

[Fei19] Uriel Feige. A randomized strategy in the mirror game. arXiv preprint

arXiv:1901.07809, 2019. 27, 28

[FM18] Lene M. Favrholdt and Jesper W. Mikkelsen. Online edge coloring of paths and trees

with a fixed number of colors. Acta Informatica, 55(1):57–80, 2018. 160, 164, 166

[FN03] Lene M. Favrholdt and Morten N. Nielsen. On-line edge-coloring with a fixed number

of colors. Algorithmica, 35(2):176–191, 2003. 160, 164, 166

[FPUV22] Mia Filic, Kenneth G. Paterson, Anupama Unnikrishnan, and Fernando Virdia. Ad-

versarial correctness and privacy for probabilistic data structures. In Proceedings of

the 2022 ACM SIGSAC Conference on Computer and Communications Security, page

1037–1050, 2022. 14

[Fre75] David A. Freedman. On tail probabilities for martingales. The Annals of Probability,

3(1):61–68, 1975. 187, 190

[FW23] Ying Feng and David Woodruff. Improved algorithms for white-box adversarial

streams. 2023. 15

[GDP05] S. Gandham, M. Dawande, and R. Prakash. Link scheduling in sensor networks:

distributed edge coloring revisited. In Proceedings IEEE 24th Annual Joint Conference

of the IEEE Computer and Communications Societies., volume 4, pages 2492–2501 vol.

4, 2005. 159

[GG11] Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers

and their cryptographic applications. In Electron. Colloquium Comput. Complex.,

volume 18, page 136, 2011. 14

220

[GGMW20] Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-

Deterministic Streaming. In Proc. 20th Conference on Innovations in Theoretical

Computer Science, volume 151, pages 79:1–79:25, 2020. 4, 14, 18

[GGS23] Ofer Grossman, Meghal Gupta, and Mark Sellke. Tight space lower bound for pseudo-

deterministic approximate counting. arXiv preprint arXiv:2304.01438, 2023. 14

[GK21] Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler,

faster, and without network decomposition. In Proc. 62nd Annual IEEE Symposium

on Foundations of Computer Science, pages 1009–1020, 2021. 116, 142

[GPK95] Daniel M Gordon, Oren Patashnik, and Greg Kuperberg. New constructions for cov-

ering designs. Journal of Combinatorial Designs, 3(4):269–284, 1995. 38

[GS18] Sumegha Garg and Jon Schneider. The Space Complexity of Mirror Games. In Proc.

10th Conference on Innovations in Theoretical Computer Science, pages 36:1–36:14,

2018. 27

[GS23] Prantar Ghosh and Manuel Stoeckl. Low-memory algorithms for online and W-

streaming edge coloring. arXiv preprint arXiv:2304.12285, 2023. iii

[GSS22] Christian Glazik, Jan Schiemann, and Anand Srivastav. A one pass streaming algo-

rithm for finding Euler tours. Theory of Computing Systems, pages 1–23, 12 2022.

166

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudo-

random generator from any one-way function. SIAM J. Comput., 28(4):1364–1396,

1999. 115

[HJN+11] Ling Huang, Anthony D. Joseph, Blaine Nelson, Benjamin I.P. Rubinstein, and

J. Doug Tygar. Adversarial machine learning. In Proceedings of the 4th ACM workshop

on Security and artificial intelligence, pages 43–58, 2011. 14

[HKM+20] Avinatan Hassidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri Stemmer.

Adversarially robust streaming algorithms via differential privacy. In Advances in

Neural Information Processing Systems 33: Annual Conference on Neural Information

Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. 13

[HKNT22] Magnus M. Halldorsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonayan. Near-

optimal distributed degree+1 coloring. In Proc. 54th Annual ACM Symposium on the

Theory of Computing, pages 450–463, 2022. 113, 119, 142

221

[Hol81] Ian Holyer. The NP-completeness of edge-coloring. SIAM Journal on Computing,

10(4):718–720, 1981. 159

[HW13] Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive

inputs? In Proc. 45th Annual ACM Symposium on the Theory of Computing, pages

121–130, 2013. 13

[Ind06] Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data

stream computation. J. ACM, 53(3):307–323, 2006. 14

[IR08] Piotr Indyk and Milan Ruzic. Near-optimal sparse recovery in the l1 norm. In Proc.

49th Annual IEEE Symposium on Foundations of Computer Science, pages 199–207,

2008. 32

[JP83] Kumar Joag-Dev and Frank Proschan. Negative association of random variables, with

applications. Ann. Stat., 11(1):286–295, 1983. 16, 17

[JST11] Hossein Jowhari, Mert Saglam, and Gábor Tardos. Tight bounds for lp samplers,

finding duplicates in streams, and related problems. In Proc. 30th ACM Symposium

on Principles of Database Systems, pages 49–58, 2011. 27, 31, 32

[JURdW16] Tiago Januario, Sebastián Urrutia, Celso C. Ribeiro, and Dominique de. Werra. Edge

coloring: A natural model for sports scheduling. European Journal of Operational

Research, 254(1):1–8, 2016. 159

[JW23] Rajesh Jayaram and David P Woodruff. Towards optimal moment estimation in

streaming and distributed models. ACM Trans. Alg., 19(3):1–35, 2023. 14

[Kah65] William Kahan. Pracniques: further remarks on reducing truncation errors. Commun.

ACM, 8(1):40, Jan 1965. 12

[KLS+22] Janardhan Kulkarni, Yang P. Liu, Ashwin Sah, Mehtaab Sawhney, and Jakub Tar-

nawski. Online edge coloring via tree recurrences and correlation decay. In STOC ’22:

54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy, June

20 - 24, 2022, pages 104–116. ACM, 2022. 160, 161, 164, 165

[KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive

streaming from oblivious streaming using the bounded storage model. In Advances

in Cryptology - CRYPTO 2021 - 41st Annual International Cryptology Conference,

CRYPTO 2021, Virtual Event, August 16-20, 2021, Proceedings, Part III, volume

12827 of Lecture Notes in Computer Science, pages 94–121. Springer, 2021. 3, 13, 115

222

[KN97] Eyal Kushilevitz and Noam Nisan. Communication Complexity. Cambridge University

Press, Cambridge, 1997. 35

[KNP+17] Michael Kapralov, Jelani Nelson, Jakub Pachocki, Zhengyu Wang, David P. Woodruff,

and Mobin Yahyazadeh. Optimal lower bounds for universal relation, and for sam-

plers and finding duplicates in streams. In Proc. 58th Annual IEEE Symposium on

Foundations of Computer Science, pages 475–486, 2017. 27

[KP20] John Kallaugher and Eric Price. Separations and equivalences between turnstile

streaming and linear sketching. In Proc. 52nd Annual ACM Symposium on the Theory

of Computing, page 1223–1236, 2020. 13

[Kuh20] Fabian Kuhn. Faster deterministic distributed coloring through recursive list coloring.

In Shuchi Chawla, editor, Proc. 31st Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 1244–1259. SIAM, 2020. 116

[LNW14] Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might

as well be linear sketches. In Proc. 46th Annual ACM Symposium on the Theory of

Computing, pages 174–183, 2014. 13

[LPS88] Alexander Lubotzky, Ralph Phillips, and Peter Sarnak. Ramanujan graphs. Combi-

natorica, 8(3):261–277, 1988. 170

[LS11] Luigi Laura and Federico Santaroni. Computing strongly connected components in

the streaming model. In Alberto Marchetti-Spaccamela and Michael Segal, editors,

Theory and Practice of Algorithms in (Computer) Systems, pages 193–205. Springer

Berlin Heidelberg, 2011. 166

[Mag24] Roey Magen. Are we still missing an item? arXiv preprint arXiv:2401.06547, 2024.

28

[McG14] Andrew McGregor. Graph stream algorithms: a survey. ACM SIGMOD Record,

43(1):9–20, 2014. 12, 117

[MG92] Jayadev Misra and David Gries. A constructive proof of vizing’s theorem. Information

Processing Letters, 41(3):131–133, 1992. 159, 174

[Mik15] Jesper W. Mikkelsen. Optimal online edge coloring of planar graphs with advice. In

Algorithms and Complexity - 9th International Conference, CIAC 2015, Paris, France,

May 20-22, 2015. Proceedings, volume 9079 of Lecture Notes in Computer Science,

pages 352–364. Springer, 2015. 164, 166

223

[Mik16] Jesper W. Mikkelsen. Randomization can be as helpful as a glimpse of the future

in online computation. In 43rd International Colloquium on Automata, Languages,

and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs,

pages 39:1–39:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. 160, 164,

166

[MN22a] Roey Magen and Moni Naor. Mirror games against an open book player. In 11th

International Conference on Fun with Algorithms (FUN 2022), volume 226, pages

20:1–20:12, 2022. 28

[MN22b] Boaz Menuhin and Moni Naor. Keep that card in mind: Card guessing with limited

memory. In Proc. 13th Conference on Innovations in Theoretical Computer Science,

pages 107:1–107:28, 2022. 27, 28

[Mor93] Pieter Moree. Bertrand’s postulate for primes in arithmetical progressions. Computers

& Mathematics with Applications, 26(5):35–43, 1993. 170

[Mor13] Ben Morris. Improved mixing time bounds for the thorp shuffle. Combinatorics,

Probability and Computing, 22(1):118–132, 2013. 165, 211

[MR14] Michael Molloy and Bruce Reed. Colouring graphs when the number of colours is

almost the maximum degree. Journal of Combinatorial Theory, Series B, 109:134–

195, 2014. 112

[Mut05] S. Muthukrishnan. Data streams: Algorithms and applications. Found. Trends Theor.

Comput. Sci., 1(2):117–236, 2005. 12, 27

[MWY13] Marco Molinaro, David Woodruff, and Grigory Yaroslavtsev. Beating the direct sum

theorem in communication complexity with implications for sketching. In Proc. 24th

Annual ACM-SIAM Symposium on Discrete Algorithms, page to appear, 2013. 12

[New91] Ilan Newman. Private vs. common random bits in communication complexity. Inform.

Process. Lett., 39(2):67–71, 1991. 9, 74

[Nis90] Noam Nisan. Pseudorandom generators for space-bounded computation. In Proc.

22nd Annual ACM Symposium on the Theory of Computing, pages 204–212, 1990. 14,

115

[Nis93] Noam Nisan. On read once vs. multiple access to randomness in logspace. Theoretical

Computer Science, 107(1):135–144, 1993. 15

224

[NO22] Moni Naor and Noa Oved. Bet-or-pass: Adversarially robust bloom filters. In Theory

of Cryptography Conference, pages 777–808, 2022. 14

[NSW23] Joseph Naor, Aravind Srinivasan, and David Wajc. Online dependent rounding

schemes. CoRR, abs/2301.08680, 2023. 160, 161, 164, 165

[NY19] Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. ACM Trans.

Alg., 15(3):35:1–35:30, 2019. 14, 28

[PR22] Kenneth G Paterson and Mathilde Raynal. Hyperloglog: Exponentially bad in ad-

versarial settings. In 2022 IEEE 7th European Symposium on Security and Privacy

(EuroS&P), pages 154–170. IEEE, 2022. 14

[PR23] Binghui Peng and Aviad Rubinstein. Near optimal memory-regret tradeoff for online

learning. arXiv preprint arXiv:2303.01673, 2023. 14

[RU94] Prabhakar Raghavan and Eli Upfal. Efficient routing in all-optical networks. In Pro-

ceedings of the twenty-sixth annual ACM symposium on Theory of computing (STOC),

pages 134–143, 1994. 159

[Sha48] Claude E. Shannon. A mathematical theory of communication. Bell System Technical

Journal, 27(3):379–423, 1948. 43

[Sha49] Claude E. Shannon. A theorem on coloring the lines of a network. Journal of Mathe-

matics and Physics, 28(1-4):148–152, 1949. 159

[SS96] Michael Sipser and Daniel A. Spielman. Expander codes. IEEE Transactions on

Information Theory, 42(6):1710–1722, 1996. 165, 169, 170

[SSS95] Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–hoeffding bounds

for applications with limited independence. SIAM Journal on Discrete Mathematics,

8(2):223–250, 1995. 33

[SSS23] Menachem Sadigurschi, Moshe Shechner, and Uri Stemmer. Relaxed Models for Ad-

versarial Streaming: The Bounded Interruptions Model and the Advice Model. In

31st Annual European Symposium on Algorithms (ESA 2023), volume 274 of Leibniz

International Proceedings in Informatics (LIPIcs), pages 91:1–91:14, 2023. 13

[Ste21] Uri Stemmer. Separating adaptive streaming from oblivious streaming. Lecture at

STOC 2021 Workshop: Robust Streaming, Sketching and Sampling, available online

at https://www.youtube.com/watch?v=svgv-xw9DZc&t=7679s, 2021. Based on joint

work with Haim Kaplan, Yishay Mansour, and Kobbi Nissim. 115

225

https://www.youtube.com/watch?v=svgv-xw9DZc&t=7679s

[Sti96] Douglas R. Stinson. On the connections between universal hashing, combinatorial

designs and error-correcting codes. Congressus Numerantium, pages 7–28, 1996. 150

[Sto23] Manuel Stoeckl. Streaming algorithms for the Missing Item Finding problem. In Proc.

34th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 793–818, 2023. iii

[SW10] Johannes Schneider and Roger Wattenhofer. A new technique for distributed symme-

try breaking. In Andréa W. Richa and Rachid Guerraoui, editors, Proc. 29th ACM

Symposium on Principles of Distributed Computing, pages 257–266. ACM, 2010. 116

[SW21] Amin Saberi and David Wajc. The greedy algorithm is not optimal for on-line edge

coloring. In 48th International Colloquium on Automata, Languages, and Program-

ming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume

198 of LIPIcs, pages 109:1–109:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2021. 160, 161, 164, 165, 169

[Tar07] Jun Tarui. Finding a duplicate and a missing item in a stream. In Proc. 4th In-

ternational Conference on Theory and Applications of Models of Computation, pages

128–135, 2007. 26

[Viz64] V. G. Vizing. On an estimate of the chromatic class of a p-graph. Discret Analiz,

3:25–30, 1964. 159

[Viz65] Vadim G Vizing. The chromatic class of a multigraph. Cybernetics, 1(3):32–41, 1965.

5

[WC81] Mark N. Wegman and Larry Carter. New hash functions and their use in authentica-

tion and set equality. J. Comput. Syst. Sci., 22(3):265–279, 1981. 35, 211

[WZ21] David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams

and sliding windows via difference estimators. In Proc. 62nd Annual IEEE Symposium

on Foundations of Computer Science, pages 1183–1196, 2021. 13

[WZ22] David P. Woodruff and Samson Zhou. Tight bounds for adversarially robust streams

and sliding windows via difference estimators. In Proc. 62nd Annual IEEE Symposium

on Foundations of Computer Science, pages 1183–1196, 2022. 13

[WZZ23] David Woodruff, Fred Zhang, and Samson Zhou. On robust streaming for learning with

experts: Algorithms and lower bounds. In Advances in Neural Information Processing

Systems, volume 36, pages 79518–79539, 2023. 14

226

[ZA21] Alaettin Zubaroğlu and Volkan Atalay. Data stream clustering: a review. Artificial

Intelligence Review, 54(2):1201–1236, 2021. 13

227

	Introduction
	Definitions
	Basic definitions and notation
	Streaming algorithms and models
	Types of randomness
	Setting and performance requirements
	Related work

	Common lemmas

	Streaming algorithms for Missing Item Finding
	Introduction
	Results
	Related work
	Warm-up

	Classical randomized algorithms
	A sampling algorithm
	Using sparse recovery

	Random oracle space complexity, adversarial setting
	Introducing AVOID
	Lower bound: reduction from AVOID
	Upper bound: the hidden list algorithm

	Zero-error model variant
	Deterministic space complexity
	Lower bound: an embedded instance of AVOID
	Upper bound: filtering by coordinates
	Upper bound: using AVOID protocols to improve efficiency

	Pseudo-deterministic lower bound
	Definitions and parameters
	Proof by induction
	Calculating the lower bound

	Random seed space complexity, adversarial setting
	Lower bound: a general reduction to the pseudo-deterministic case
	Upper bound: hidden list of subsets

	White-box adversarial lower bound
	Classical lower bounds
	By reduction from deterministic
	By modified AVOID lower bound

	Random tape upper bound, adversarial setting
	Definitions and the random tree view
	Setting parameters and bounding space
	The error bound

	Random tape lower bound, adversarial setting
	The induction step
	Calculating the lower bound

	Conclusion

	Robust and multipass deterministic streaming algorithms for graph coloring
	Introduction
	Results
	Related work

	Preliminaries
	Hardness of adversarially robust graph coloring
	The k-fold subset avoidance problem
	Reducing k-AVOID to graph coloring

	A robust random-seed algorithm
	A robust random-oracle algorithm
	High-level description and techniques
	The robust algorithm and its analysis

	A multipass deterministic algorithm
	High-level organization
	The logic of an epoch: extending a partial coloring
	Detailed algorithm and proof of correctness
	Space and pass complexity
	Extending to list coloring

	Slightly improved deterministic lower bound
	Conclusion

	Streaming algorithms for online edge coloring
	Introduction
	Results
	Related work

	Preliminaries
	Notation
	Models

	Algorithm transformations/reductions
	From bipartite graphs to general graphs
	Color-space tradeoff

	Edge coloring on vertex arrival streams
	Randomized online algorithm for vertex arrivals
	Deterministic online algorithm for vertex arrivals

	Edge coloring on edge arrival streams
	W-streaming algorithm for edge arrivals
	Randomized online algorithm for edge arrivals
	Deterministic online algorithm for edge arrivals

	A lower bound for deterministic edge coloring
	Details of constructing random permutations
	Conclusion

	Bibliography

