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Abstract

Adversarially robust streaming algorithms are required to process a stream of elements and produce
correct outputs, even when each stream element can be chosen as a function of earlier algorithm outputs.
As with classic streaming algorithms, which must only be correct for the worst-case fixed stream, adver-
sarially robust algorithms with access to randomness can use significantly less space than deterministic
algorithms. We prove that for the Missing Item Finding problem in streaming, the space complexity
also significantly depends on how adversarially robust algorithms are permitted to use randomness. (In
contrast, the space complexity of classic streaming algorithms does not depend as strongly on the way
randomness is used.)

For Missing Item Finding on streams of length ℓ with elements in {1, . . . ,n}, and ≤ 1/poly(ℓ) er-
ror, we show that when ℓ = O(2

√
logn), “random seed” adversarially robust algorithms, which only use

randomness at initialization, require ℓΩ(1) bits of space, while “random tape” adversarially robust al-
gorithms, which may make random decisions at any time, may use O(polylog(ℓ)) space. When ℓ is
between nΩ(1) and O(

√
n), “random tape” adversarially robust algorithms need ℓΩ(1) space, while “ran-

dom oracle” adversarially robust algorithms, which can read from a long random string for free, may use
O(polylog(ℓ)) space. The space lower bound for the “random seed” case follows, by a reduction given
in prior work, from a lower bound for pseudo-deterministic streaming algorithms given in this paper.

*This work was supported in part by the National Science Foundation under award 2006589.
†Department of Computer Science, Dartmouth College, Hanover NH 03755, USA.



1 Introduction

Randomized streaming algorithms can achieve exponentially better space bounds than corresponding deter-
ministic ones: this is a basic, well-known, easily proved fact that applies to a host of problems of practical
interest. A prominent class of randomized streaming algorithms uses randomness in a very specific way,
namely to sketch the input stream by applying a random linear transformation—given by a sketch matrix
S—to the input frequency vector. The primary goal of a streaming algorithm is to achieve sublinear space,
so it is infeasible to store S explicitly. In some well-known cases, the most natural presentation of the
algorithm is to explicitly describe the distribution of S, a classic case in point being frequency moment
estimation [Ind06]. This leads to an algorithm that is very space-efficient provided one doesn’t charge the
algorithm any space cost for storing S. Algorithms that work this way can be thought of as accessing
a “random oracle”: despite their impracticality, they have theoretical value, because the standard ways of
proving space lower bounds for randomized streaming algorithms in fact work in this model. For the specific
frequency-moment algorithms mentioned earlier, [Ind06] goes on to design variants of his algorithms that
use only a small (sublinear) number of random bits and apply a pseudorandom generator to suitably mimic
the behavior of his random-oracle algorithms. Thus, at least in this case, a random oracle isn’t necessary
to achieve sublinear complexity. This raises a natural question: from a space complexity viewpoint, does it
ever help to use a random oracle, as opposed to “ordinary” random bits that must be stored (and thus paid
for) if they are to be reused?

For most classic streaming problems, the answer is “No,” but for unsatisfactory reasons: Newman’s
Theorem [New91] allows one to replace a long oracle-provided random string by a much shorter one (that is
cheap to store), though the resulting algorithm is non-constructive. This brings us to the recent and ongoing
line of work on adversarially robust streaming algorithms where we shall find that the answer to our question
is a very interesting “Yes.” For the basic and natural MISSINGITEMFINDING problem, defined below, we
shall show that three different approaches to randomization result in distinct space-complexity behaviors.
To explain this better, let us review adversarial robustness briefly.

Some recent works have studied streaming algorithms in a setting where the input to the algorithm
can be adaptively (and adversarially) chosen based on its past outputs. Existing (“classic”) randomized
streaming algorithms may fail in this adversarial setting when the input-generating adversary learns enough
about the past random choices of the algorithm to identify future inputs on which the algorithm will likely
fail. There are, heuristically, two ways for algorithm designers to protect against this: (a) prevent the
adversary from learning the past random choices of the algorithm (in the extreme, by making a pseudo-
deterministic algorithm), or (b) prevent the adversary from exploiting knowledge of past random decisions,
by having the algorithm’s future behavior depend on randomness that it has not yet revealed. Concretely,
algorithms in this setting use techniques such as independent re-sampling [BY20], sketch switching us-
ing independent sub-instances of an underlying classic algorithm [BJWY20], rounding outputs to limit the
number of computation paths [BJWY20], and differential privacy to safely aggregate classic algorithm sub-
instances [HKM+20]. Mostly, these algorithms use at most as many random bits as their space bounds allow.
However, some recently published adversarially robust streaming algorithms for vertex-coloring a graph
(given by an edge stream) [CGS22, ACGS23], and one for the MISSINGITEMFINDING problem [Sto23],
assume access to a large amount of oracle randomness: they prevent the adversary from exploiting the ran-
dom bits it learns by making each output depend on an unrevealed part of the oracle random string. It is
still open whether these last two problems have efficient solutions that do not use this oracle randomness
hammer. This suggests the following question:

Are there problems for which space-efficient adversarially robust streaming
algorithms provably require access to oracle randomness?

In this paper, we prove that for certain parameter regimes, MISSINGITEMFINDING (henceforth, MIF)
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is such a problem. In the problem MIF(n, ℓ), the input is a stream ⟨e1, . . . ,eℓ⟩ of ℓ integers, not necessarily
distinct, with each ei ∈ {1, . . . ,n}, where 1≤ ℓ≤ n. The goal is as follows: having received the ith integer,
output a number v in {1, . . . ,n} \ {e1, . . . ,ei}. We will be mostly interested in the setting ℓ = o(n), so
the “trivial” upper bound on the space complexity of MIF(n, ℓ) is O(ℓ logn), achieved by the deterministic
algorithm that simply stores the input stream as is.

1.1 Groundwork for Our Results

To state our results about MIF, we need to introduce some key terminology. Notice that MIF is a tracking
problem: an output is required after reading each input.1 Thus, we view streaming algorithms as generaliza-
tions of finite state (Moore-type) machines. An algorithm A has a finite set of states Σ (leading to a space
cost of log2 |Σ|), a finite input set I, and a finite output set O. It has a transition function T : Σ×I×R→ Σ

indicating the state to switch to after receiving an input, plus an output function γ : Σ×R→O indicating
the output produced upon reaching a state. How the final parameter (in R) of T and γ is used depends on
the type of randomness. We consider four cases, leading to four different models of streaming computation.

• Deterministic. The initial state of the algorithm is a fixed element of Σ, and T and γ are deterministic
(they do not depend on the parameter inR).

• Random seed. The initial state is drawn from a distribution D over Σ, and T and γ are deterministic.
This models the situation that all random bits used count towards the algorithm’s space cost.

• Random tape. The initial state is drawn from a distribution D over Σ.2 The spaceR is a sample space;
when the algorithm receives an input e∈ I and is at state σ ∈ Σ, it chooses a random ρ ∈R independent
of all previous choices and moves to state T (e,σ ,ρ). However, γ is deterministic.3 This models the
situation that the algorithm can make random decisions at any time, but it cannot remember past random
decisions without recording them (which would add to its space cost).

• Random oracle. The initial state is fixed;R is a sample space. A specific R ∈R is drawn at the start of
the algorithm and stays the same over its lifetime. When the algorithm is at state σ and receives input e,
its next state is T (e,σ ,R). The output given at state σ is γ(σ ,R). This models the situation that random
bits are essentially “free” to the algorithm; it can read from a long random string which doesn’t count
toward its space cost and which remains consistent over its lifetime. A random oracle algorithm can be
interpreted as choosing a random deterministic algorithm, indexed by R, from some family.

These models form a rough hierarchy; they have been presented in (almost) increasing order of power.
Every z-bit (2z-state) deterministic algorithm can be implemented in any of the random models using z bits
of space; the same holds for any z-bit random seed algorithm. Every z-bit random tape algorithm has a
corresponding (z+ logℓ)-bit random oracle algorithm—the added space cost is because for a random oracle
algorithm to emulate a random tape algorithm, it must have a way to get “fresh” randomness on each turn.4

Streaming algorithms are also classified by the kind of correctness guarantee they provide. Recall that
we focus on “tracking” algorithms [BJWY20]; they present an output after reading each input item and this

1We do not consider algorithms with a “one-shot” guarantee, to only be correct at the end of the stream, because a) the adversarial
setting requires tracking output b) for MIF and most other problems the difference in space complexity is generally small.

2Requiring that this model use a fixed initial state could make some algorithms use one additional “INIT” state.
3Alternatively, we could associate a distribution of outputs to each state, or a function mapping (input, state) pairs to outputs. As

these formulations are slightly more complicated to prove things with, and only affect the space usage of MISSINGITEMFINDING

algorithms by an additive O(logn+ log 1
δ
) amount, we stick with the one state = one output convention.

4An alternative, which lets one express z-bit random tape algorithms using a z-bit random oracle variant, is to assume the random
oracle algorithm has access to a clock or knows the position in the stream for free; both are reasonable assumptions in practice.
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entire sequence of outputs must be correct. Here are three possible meanings of the statement “algorithm A
is δ -error” (we assume that A handles streams of length ℓ with elements in I and has outputs in O):

• Static setting. For all inputs τ ∈ Iℓ, running A on τ produces incorrect output with probability ≤ δ .

• Adversarial setting. For all (computationally unbounded) adaptive adversaries α (i.e., for all functions
α : O⋆→I),5 running A against α will produce incorrect output with probability ≤ δ .

• Pseudo-deterministic setting. There exists a canonical output function f : I⋆→O producing all correct
outputs so that, for each τ ∈ Iℓ, A(τ) fails to output f (τ) with probability ≤ δ .

Algorithms for the static setting are called “classic” streaming algorithms; ones for the adversarial setting
are called “adversarially robust” streaming algorithms. All pseudo-deterministic algorithms are adversari-
ally robust, and all adversarially robust algorithms are also classic.

As a consequence of Newman’s theorem [New91], any random oracle or random tape algorithm in the
static setting with error δ can be emulated using a random seed algorithm with only ε increase in error and an
additional O(logℓ+ log log |I|+ log 1

εδ
) bits of space. However, the resulting algorithm is non-constructive.

1.2 Our Results

As context for our results, we remind the reader that it’s trivial to solve MIF(n, ℓ) in O(ℓ logn) space deter-
ministically (somewhat better deterministic bounds were obtained in [Sto23]). Moving to randomized algo-
rithms, [Sto23] gave a space bound of O(log2 n) for ℓ≤ n/2 in the static setting, and a bound of Õ(ℓ2/n+1) 6

in the adversarial setting, using a random oracle. The immediate takeaway is that, given access to a deep
pool of randomness (i.e., an oracle), MIF becomes easy in the static setting for essentially the full range of
stream lengths ℓ and remains easy even against an adversary for lengths ℓ≤

√
n.

The main results of this paper consist of three new lower bounds and one new upper bound on the
space complexity of MIF(n, ℓ). Stating the bounds in their strongest forms leads to complicated expressions;
therefore, we first present some easier-to-read takeaways from these bounds that carry important conceptual
messages. In the lower bounds below, the error level should be thought of as δ = 1/n2.

Result 1. At ℓ =
√

n, adversarially robust random tape algorithms for MIF(n, ℓ) require Ω(ℓ1/4) bits of
space. More generally, for every constant α ∈ (0,1), there is a constant β ∈ (0,1) such that at ℓ= Ω(nα),
the space requirement is Ω(ℓβ ), in the adversarially robust random tape setting.

This shows that MIF remains hard, even for modest values of ℓ, if we must be robust while using only a
random tape, i.e., if there is a cost to storing random bits we want to reuse—a very reasonable requirement
for a practical algorithm. The above result is an exponential separation between the random tape and random
oracle models.

The random seed model places an even greater restriction on an algorithm: besides counting towards
storage cost, random bits are available only at initialization and not on the fly. Many actual randomized
algorithms, including streaming ones, are structured this way, making it a natural model to study. We obtain
the following result.

Result 2. Adversarially robust random seed algorithms for MIF(n, ℓ) require Ω̃(
√
ℓ) bits of space.

Consider the two results above as ℓ decreases from
√

n to Θ(1). The bound in Result 2 stays interesting
even when ℓ= no(1), so long as ℓ≥ (logn)C for a suitable constant C (in fact, the full version of the result is

5By the minimax theorem, it suffices to consider deterministic adversaries.
6The notations Õ(·) and Ω̃(·) hide factors polylogarithmic in n and ℓ.
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Setting Type Bound Reference

Static Random seed O((logn)2) if ℓ≤ n/2 [Sto23]a

Adversarial Random oracle O(( ℓ
2

n + logn) logn) [Sto23]

Ω( ℓ
2

n ) [Sto23]

Adversarial Random tape O(ℓlogn ℓ(logℓ)2 + logℓ · logn) † Theorem 5.6

Ω(ℓ
15
32 logn ℓ) † Theorem 4.8

Adversarial Random seed O(( ℓ
2

n +
√
ℓ+ logn) logn) [Sto23]b

Ω( ℓ
2

n +
√

ℓ
(logn)3 + ℓ1/5) Theorem 6.11

Pseudo-deterministic Random oracle Ω( ℓ
(log(2n/ℓ))2 +(ℓ logn)1/4) Theorem 6.9

Static Deterministic Ω( ℓ
log(2n/ℓ) +

√
ℓ) [Sto23]

O( ℓ logℓ
logn +

√
ℓ logℓ) [Sto23]

Table 1: Bounds for the space complexity of MIF(n, ℓ), from this and prior work. To keep expressions simple, these
bounds are evaluated at error level δ = 1/n2, when applicable. (†) indicates that the precise results are stronger.

aThis is obtained by accounting for the randomness cost of [Sto23]’s random oracle algorithm for the static setting.
bThe random seed algorithm for the adversarial setting is given in the arXiv version of [Sto23].
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Figure 1: Known bounds for the space complexity of MIF(n, ℓ) in different streaming models, at error level δ = 1/n2.
This is a log-log plot. Upper and lower bounds are drawn using lines of the same color; the region between them is
shaded. The upper and lower bounds shown all match (up to polylog(n) factors) except for the case of adversarially
robust, random tape algorithms. Pseudo-deterministic and deterministic complexities match within polylog(n) factors.
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good for even smaller ℓ). In contrast, the bound in Result 1 peters out at much larger values of ℓ. There is
a very good reason: MIF starts to become “easy,” even under a random-tape restriction, once ℓ decreases to
sub-polynomial in n. Specifically, we obtain the following upper bound.

Result 3. There is an adversarially robust random tape algorithm for MIF(n, ℓ) that, in the regime ℓ =
O(2

√
logn), uses O(logℓ · logn) bits of space.

Notice that at ℓ= Θ(2(logn)1/C
), where C ≥ 2 is a constant, the bound in Result 3 is polylogarithmic in ℓ.

Combined with the lower bound in Result 2, we have another exponential separation, between the random
seed and random tape models.

Empirically, the existing literature on streaming algorithms consists of numerous linear-sketch-based
algorithms, which tend to be efficient in the random seed model, and sampling-based algorithms, which
naturally fit the (stronger) random tape model. In view of this, the combination of Results 2 and 3 carries
the following important message.

Sampling is provably more powerful than sketching in an adversarially robust setting.

The proof of Result 2 uses a reduction, given in prior work [Sto23], that converts a space lower bound
in the pseudo-deterministic setting to a related bound in the random-seed setting. A pseudo-deterministic
algorithm is allowed to use randomness (which, due to Newman’s theorem, might as well be of the oracle
kind) but must, with high probability, map each input to a fixed output, just as a deterministic algorithm
would. This strong property makes the algorithm adversarially robust, because the adversary has nothing to
learn from observing its outputs. Thanks to the [Sto23] reduction, the main action in the proof of Result 2
is the following new lower bound we give.

Result 4. Pseudo-deterministic random oracle algorithms for MIF(n, ℓ) require Ω̃(ℓ) bits of space.

These separations rule out the possibility of a way to convert an adversarially robust random oracle
algorithm to use only a random seed or even a random tape, with only minor (e.g., a polylog(ℓ,n) fac-
tor) overhead. In contrast, as we noted earlier, such a conversion is routine in the static setting, due to
Newman’s theorem [New91]. The separation between random oracle and random tape settings shows that
MISSINGITEMFINDING is a problem for which much lower space usage is possible if one’s adversaries are
computationally bounded (in which case a pseudo-random generator can emulate a random oracle.)

Table 1 shows more detailed versions of the above results as well as salient results from earlier work.
Together with Figure 1, it summarizes the state of the art for the space complexity of MIF(n, ℓ). The fully
detailed versions of our results, showing the dependence of the bounds on the error probability, appear in
later sections of the paper, as indicated in the table.

1.3 Related Work

We briefly survey related work. An influential early work [HW13] considered adaptive adversaries for linear
sketches. The adversarial setting was formally introduced by [BJWY20], who provided general methods
(like sketch-switching) for designing adversarially robust algorithms given classic streaming algorithms,
especially in cases where the problem is to approximate a real-valued quantity. For some tasks, like F0-
estimation, they obtained slightly better upper bounds by using a random oracle, although later work [WZ22]
removed this need. [BY20] observed that in sampling-based streaming algorithms, increasing the sample
size is often all that is needed to make an algorithm adversarially robust. [HKM+20] described how to use
differential privacy techniques as a more efficient alternative to sketch-switching, and [BEEO22] used this
as part of a more efficient adversarially robust algorithm for turnstile F2-estimation.
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Most of these papers focus on providing algorithms and general techniques, but there has been some
work on proving adversarially robust lower bounds. [KMNS21] described a problem (of approximating a
certain real-valued function) that requires exponentially more space in the adversarial setting than in the
static setting. [CGS22], in a brief comment, observed a similar separation for a simple problem along the
lines of MIF. They also proved lower bounds for adversarially robust coloring algorithms for graph edge-
insertion streams. [Sto23] considered the MIF problem as defined here and, among upper and lower bounds
in a number of models, described an adversarially robust algorithm for MIF that requires a random oracle;
they asked whether a random oracle is necessary for space-efficient algorithms.

The white-box adversarial setting [ABJ+22] is similar to the adversarial setting we study, with the adver-
sary having the additional power of seeing the internal state of the algorithm, including (if used) the random
oracle. [Sto23] proved an Ω(ℓ/polylog(n)) lower bound for MIF(n, ℓ) for random tape algorithms in this
setting, suggesting that any more efficient algorithm for MIF must conceal some part of its internal state.
Pseudo-deterministic streaming algorithms were introduced by [GGMW20], who gave lower bounds for a
few problems. [BKKS23, GGS23] gave lower bounds for pseudo-deterministic algorithms that approxi-
mately count the number of stream elements. The latter shows they require Ω(logm) space, where m is the
stream length; in contrast, in the static setting, Morris’s counter algorithm7 uses only O(log logm) space.

While it is not posed as a streaming task, the mirror game introduced by [GS18] is another problem with
conjectured separation between the space needed for different types of randomness. In the mirror game, two
players (Alice and Bob) alternately state numbers in the set {1, . . . ,n}, where n is even, without repeating any
number, until one player mistakenly states a number said before (loss) or the set is completed (tie). [GS18]
showed that if Alice has o(n) bits of memory and plays a deterministic strategy, Bob can always win. Later,
[Fei19, MN22b] showed that if Alice has access to a random oracle, she can tie-or-win w.h.p. using only
O(polylog(n)) space. A major open question here is how much space Alice needs when she does not have
a random oracle. [MN22a] did not resolve this, but showed that if Alice is “open-book” (equivalently, that
Bob is a white-box adversary and can see her state), then Alice needs Ω(n) bits of state to tie-or-win.

Assuming access to a random oracle is a reasonable temporary measure when designing streaming
algorithms in the static setting. As noted at the beginning of Section 1, [Ind06] designed Lp-estimation
algorithms using random linear sketch matrices, without regard to the amount of randomness used, and
then described a way to apply Nisan’s PRG [Nis90] to partially derandomize these algorithms and obtain
efficient (random seed) streaming algorithms. In general, the use of PRGs for linear sketches has some space
overhead, which later work (see [JW23] as a recent example) has been working to eliminate.

It is important to distinguish the “random oracle” type of streaming algorithm from the “random oracle
model” in cryptography [BR93], in which one assumes that all agents have access to the random oracle.
[ABJ+22], when defining white-box adversaries, also assumed that they can see the same random oracle
as the algorithm; and, for one task, obtained a more efficient algorithm against a computationally bounded
white-box adversary, when both have access to a random oracle, than when neither do. Tight lower bounds
are known in neither case.

The power of different types of access to randomness has been studied in computational complexity.
[Nis93] showed that logspace Turing machines with a multiple-access random tape can (with zero error)
decide languages that logspace Turing machines with a read-once random tape decide only with bounded
two-sided error. This type of separation does not hold for time complexity classes.

For a more detailed history and survey of problems related to MISSINGITEMFINDING, we direct the
reader to [Sto23].

7Morris’s is a “random tape” algorithm; “random seed” algorithms for counting aren’t better than deterministic ones.
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2 Technical Overview

The proofs of Results 1, 3 and 4 are all significant generalizations of existing proofs from [Sto23] which
handled different (and more tractable) models. The proof of Result 2 consists of applying a reduction from
[Sto23] to the lower bound given by Result 4. As we explain our techniques, we will summarize the relevant
“basic” proofs from [Sto23], which will clarify the enhancements needed to obtain our results.

Space complexity lower bounds in streaming models are often proved via communication complexity.
This meta-technique is unavailable to us, because the setup of communication complexity blurs the dis-
tinctions between random seed, random tape, and random oracle models and our results are all about these
distinctions. Instead, to prove Result 1, we design a suitable strategy for the stream-generating adversary
that exploits the algorithm’s random-tape limitation by learning enough about its internal state. Our adver-
sary uses a nontrivially recursive construction. To properly appreciate it, it is important to understand what
streaming-algorithmic techniques the adversary must contend with. Therefore, we shall discuss our upper
bound result first.

2.1 Random Tape Upper Bound (Result 3; Theorem 5.6)

The adversarially robust random tape algorithm for MIF(n, ℓ) can be seen as a generalization of the random
oracle and random seed algorithms.

The random oracle algorithm and its adversaries. The random oracle algorithm for MIF(n, ℓ) from
[Sto23] has the following structure. It interprets its oracle random string as a uniformly random sequence L
containing ℓ+1 distinct elements in [n]. As it reads its input, it keeps track of which elements in L were in
the input stream so far (were “covered”). It reports as its output the first uncovered element of L. Because L
comes from the oracle, the space cost of the algorithm is just the cost of keeping track of the set J of covered
positions in L. We will explain why that can be done using only O((ℓ2/n+1) logℓ) space, in expectation.

An adversary for the algorithm only has two reasonable strategies for choosing the next input. It can
“echo” back the current algorithm output to be the next input to the algorithm. It can also choose the next
input to be a value from the set U of values that are neither an earlier input nor the current output—but
because L is chosen uniformly at random, one can show that the adversary can do no better than picking
the next input uniformly at random from U . (The third strategy, of choosing an old input, has no effect on
the algorithm.) When the algorithm is run against an adversary that chooses inputs using a mixture of the
echo and random strategies, the set J will be structured as the union of a contiguous interval starting at 1
(corresponding to the positions in L covered by the echo strategy) and a sparse random set of expected size
O(ℓ2/n) (corresponding to positions in L covered by the random strategy). Together, these parts of J can be
encoded using O((ℓ2/n+1) logℓ) bits, in expectation.

Delaying the echo strategy. If we implemented the above random oracle algorithm as a random seed
algorithm, we would need Ω(ℓ) bits of space, just to store the random list L. But why does L need to have
length ℓ+ 1? This length is needed for the algorithm to be resilient to the echo strategy, which covers one
new element of L on every step; if L were shorter, the echo strategy could entirely cover it, making the
algorithm run out of possible values to output. The random seed algorithm for MIF(n, ℓ) works by making
the echo strategy less effective, ensuring that multiple inputs are needed for it to cover another element of
L. It does this by partitioning [n] into Θ(ℓ) disjoint subsets (“blocks”) of size Θ(n/ℓ), and then taking L
to be a random list of blocks (rather than a random list of elements of [n]). We will now say that a block
is “covered” if any element of that block was an input. Instead of outputting the first uncovered element
in L, the algorithm will run a deterministic algorithm for MIF inside the block corresponding to the first
uncovered block of L, and report outputs from that; and will only move on to the next uncovered block when
the nested algorithm stops. See Listing 1 for the details of this design. Because the analogue of the echo
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strategy now requires many more inputs to cover a block, we can make the list L shorter. This change will
not make the random strategy much more effective.8 The minimum length of L is constrained by the O(n/ℓ)
block sizes, which limit the number of outputs that the nested algorithm can make; as a result, one must
have L = Ω(ℓ2/n). In the end, after balancing the length of the list with the cost of the nested algorithm, the
optimal list length for the random seed algorithm will be O(ℓ2/n+

√
ℓ).

Listing 1 Example: recursive construction for a random tape MIF(n, ℓ) algorithm, building on algorithm A
Parameter: t ∈ [Ω(ℓ2/n), ℓ] is the number of parts into which the input stream is split

Initialization:
1: Let k = O(t), s = O(ℓ), and B1, . . . ,Bs be a partition of [n] into s equal “blocks” ▷ assuming s | n
2: L← uniformly randomly chosen sequence of k distinct elements of [s]
3: J←∅, is a subset of [k] ▷ a set marking which blocks of L have been covered
4: c← 1 ▷ the current active block
5: A← instance of algorithm A solving MIF(n/s,⌈ℓ/t⌉)

Update(a ∈ [n]):
6: Let h be the block containing a, and x the rank of a in Bh
7: if h ∈ L then
8: Add j to J, where L j = h ▷ Mark list element containing h as used
9: if h = Lc then

10: A.UPDATE(x)
11: if A is out of space then ▷ This requires that A.UPDATE() be called ≥ ⌈ℓ/t⌉ times
12: c← least integer which is > c and not in J ▷ This line may abort if J = [k]
13: A← new instance of algorithm A ▷ Using new random bits, if A is randomized

Output→ [n]:
14: Let x ∈ [n/s] be the output of A
15: return xth entry of block Bc

Active
block

Inputs: black squares

Variables:
L=[1,2,3,4,5,6]
J={1,2,3,5}
c=3

(using alg
for MIF(5,3))

Parameters:
n=50, l=20
t=4,k=6,s=10

blocks not in L

previous active block

Current output: circle

Figure 2: A diagram illustrating the state of an instance of Listing 1 on an example input. Positions on the horizontal
axis correspond to integers in [n]; the set of values in the input stream ({1,2,4,9,12,13, . . .}) is marked with black
squares; the current output value (15) with a circle. Outside this example, L need not be contiguous or in sorted order.

The recursive random tape algorithm. The random seed algorithm for MIF(n, ℓ) used the construction of
Listing 1 to build on top of an “inner” deterministic algorithm.9 To get an efficient random tape algorithm,
we can recursively apply the construction of Listing 1 d− 1 times, for d = O(min(logℓ, logn/ logℓ)); at

8The fact that [n] is split into Ω(ℓ) blocks is enough to mitigate the random strategy; with ℓ guesses, the adversary is unlikely to
guess more than a constant fraction of the elements in L.

9The construction uses randomness in two places: when initializing the random sequence L, and (possibly) each time the inner
algorithm is initialized. For the random seed model, every “inner” initialization would require a corresponding set of random bits,
which are counted toward the space cost of the algorithm. Using a deterministic inner algorithm avoids this cost.
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the end of this recursion, we can use a simple deterministic algorithm for MIF. The optimal lengths of
the random lists used at each level of the recursion are determined by balancing the costs of the different
recursion levels. We end up choosing list lengths that all bounded by a quantity which lies between O(ℓ1/d)
and O(ℓ1/(d−1)).

In the extreme case where d =Θ(logℓ) and the required error level δ is constant, our recursive algorithm
may have a stack of random lists, each of length 2, and every time a level of the algorithm completes (i.e.,
all blocks of a list have been used), it will make a new instance of that level. That is, some large uncovered
block will be split into many smaller blocks, and the algorithm will randomly pick two of them for the new
instance’s list. Because the lists are all short, the algorithm will not need to remember many random bits at
a given time; in exchange, for this regime it needs a very large (n = ℓΩ(d)) number of possible outputs and
will frequently need to sample new random lists.

We defer the exact implementation details to the final version of our algorithm, Listing 3. It looks
somewhat different from the recursive construction in Listing 1, because we have unraveled the recursive
framing to allow for a simpler error analysis that must only bound the probability of a single “bad event.”

2.2 Random Tape Lower Bound (Result 1; Theorem 4.8)

The AVOID problem. At the core of many of the MIF lower bounds is the SUBSETAVOIDANCE commu-
nication problem, introduced in [CGS22]. Here we have two players, Alice and Bob, and a known universe
[m]: Alice has a set A⊆ [m] of size a, and should send a message (as short as possible) to Bob, who should
use the message to output a set B⊆ [m] of size b which is disjoint from A. Henceforth, we’ll call this problem
AVOID(m,a,b). [CGS22] showed that both deterministic and constant-error randomized one-way protocols
for this problem require Ω(ab/m) bits of communication. An adversarially robust z-space algorithm for
MIF(m,a+b) can be used as a subroutine to implement a z-bit one-way protocol for AVOID(m,a,b), thereby
proving z = Ω(ab/m). This immediately gives us an Ω(ℓ2/n) space lower bound for MIF(n, ℓ), which, as
we have seen, is near-optimal in the robust, random oracle setting.

The random tape lower bound. To prove stronger lower bounds that exploit the random tape limitation
of the algorithm, we need a more sophisticated use of AVOID. Fix an adversarially robust, random tape,
z-space algorithmA for MIF(n, ℓ). Roughly speaking, while the random oracle argument usedA to produce
an AVOID protocol at the particular scale a = b = ℓ, for the fixed universe [n], our random tape argument
will “probe” A in a recursive fashion—reminiscent of the recursion in our random tape upper bound—
to identify a suitable scale and sub-universe at which an AVOID protocol can be produced. This probing
will itself invoke the AVOID lower bound to say that if an AVOID(m,a,b) protocol is built out of a z-space
streaming algorithm where z≪ a, then B must be small, with size b = O((z/a)m).

We will focus on the regime where δ = O(1/n). This error level requires a measure of structure from the
algorithm: it cannot just pick a random output each step, because that would risk colliding with an earlier
input with≥ 1/n probability. Our recursive argument works by writing z, the space usage ofA, as a function
of a space lower bound for MIF(w, t), where w = Θ(zn/ℓ) and t = Θ(ℓ/z). For small enough z, t2/w≫ ℓ2/n,
so by repeating this reduction step a few times we can increase the ratio of the stream length to the input
domain size until we can apply the simple Ω(ℓ̂2/n̂) lower bound for MIF(n̂, ℓ̂). With the right number of
reduction steps, one obtains the lower bound formula of Theorem 4.8, of which Result 1 is a special case.

The reduction. The reduction step argues that the MIF(n, ℓ) algorithm A “contains” a z-space algorithm
for MIF(w, t), which, on being given any t = O(ℓ/z) items in a certain sub-universe W ⊆ [n] of size w =
O(zn/ℓ), will repeatedly produce missing items from that sub-universe. That such a set W exists can be seen
as a consequence of the lower bound for AVOID: if A receives a random sorted subset S of ℓ/2 elements
in [n], then because there are

( n
ℓ/2

)
possible subsets, most of the 2z states of A will need to be “good” for

Ω(2−z
( n
ℓ/2

)
) different subsets. In particular, upon reaching a given state σ , for A to solve MIF with error
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probability O(1/n), its outputs henceforth—for the next ℓ/2 items in the stream—must avoid most of the
sets of inputs that could have led it to σ . We will prove by a counting argument (Lemma 4.4) that after
the random sequence S is sent, each state σ has an associated set Hσ of possible “safe” outputs which are
unlikely to collide with the inputs from S, and that |Hσ | is typically O(zn/ℓ). Thus, for a typical state
σ , starting A from σ causes its next ℓ/2 outputs to be inside Hσ , w.h.p.; in other words, A contains a
“sub-algorithm” solving MIF(O(zn/ℓ), ℓ/2) on the set W = Hσ .

However, even though there exists a set W on whichAwill concentrate its outputs, it may not be possible
for an adversary to find it. In particular, had A been a random oracle algorithm, each setting of the random
string might lead to a different value for W , making W practically unguessable. But A is in fact a random
tape algorithm, so we can execute the following strategy.

In our core lemma, Lemma 4.3, we design an adversary (Listing 2) that can with Ω(1) probability
identify a set W of size Θ(zn/ℓ) for which the next Θ(ℓ/z) outputs of A will be contained in W , with Ω(1)
probability, no matter what inputs the adversary sends next. In other words, our adversary will identify a
part of the stream and a sub-universe of [n] where the algorithm solves MIF(Θ(zn/ℓ),Θ(ℓ/z)). The general
strategy is to use an iterative search based on a win-win argument. First, the adversary will send a stream
comprising a random subset S of size ℓ/2 to A, to ensure that henceforth its outputs are contained in some
(unknown) set Hρ , where ρ is the (unknown) state reached by A just after processing S. Because A has
≤ 2z states, from the adversary’s perspective there are ≤ 2z possible candidates for Hρ . Then, the adversary
conceptually divides the rest of the stream to be fed to A into O(z) phases, each consisting of t = O(ℓ/z)
stream items. In each phase, one of the following things happens.

1. There exists a “sub-adversary” (function to choose the t items constituting the phase, one by one)
which will probably make A output an item that rules out a constant fraction of the candidate values
for Hρ (output i rules out set J if i /∈ J). The adversary then runs this sub-adversary.

2. No matter how the adversary picks the t inputs for this phase, there will be a set W (roughly, an
“average” of the remaining candidate sets) that probably contains the corresponding t outputs of A.

As the set of candidate sets can only shrink by a constant fraction O(z) times, the first case can only happen
O(z) times, with high probability. Thus, eventually, the adversary will identify the set W that it seeks. Once
it has done so, it will run the optimal adversary for MIF(Θ(zn/ℓ),Θ(ℓ/z)). This essentially reduces the lower
bound for MIF(ℓ,n) to that for MIF(Θ(zn/ℓ),Θ(ℓ/z)).

One subtlety is that we will need to carefully account for the probability that A, over the next Θ(ℓ/z)
stream items, produces outputs outside W . This will require us to distinguish between two types of “errors”
for the algorithm over those next Θ(ℓ/z) items: an O(1) chance of producing an output outside W , and a
smaller chance of making a mistake per the definition of MIF, i.e., outputting an item that was not missing
(cf. Definition 4.1).

2.3 Random Seed Lower Bound via Pseudo-Determinism (Result 2; Theorem 6.11)

The adversary constructed above for our random tape lower bound can be seen as a significant generalization
of the adversary used by [Sto23] to prove a random seed lower bound conditioned on a (then conjectured)
pseudo-deterministic lower bound. Indeed, [Sto23]’s adversary against a z-space algorithmA also proceeds
in a number of phases, each of length t = Θ(ℓ/z). In each step, either (1) it can learn some new information
about the initial state of A (the “random seed”), by sending A a specific stream of inputs in [n]t , looking at
the resulting output, and ruling out the seed values that could not have produced the output; or (2) it cannot
learn much information, because for any possible input stream in [n]t , A has an output that it produces with
constant probability. Each time the adversary follows the case (1), a constant fraction of the≤ 2z seed values
are ruled out. Therefore, either within O(z) steps the adversary will exactly learn the seed, at which point
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it can perfectly predict A’s behavior, which lands us in case (2); or A will not reveal much information
about the seed in a given phase, which also puts us in case (2). Because case (2) means that A behaves
pseudo-deterministically, A must use enough space to pseudo-deterministically solve MIF(n, t).

Thus, Result 2 follows as a corollary of Result 4, which we discuss next.

2.4 Pseudo-Deterministic Lower Bound (Result 4; Theorem 6.9)

This proof generalizes [Sto23]’s space lower bound for deterministic MIF(n, ℓ) algorithms, which we briefly
explain. Fix a deterministic MIF(n, ℓ) algorithm A that uses z bits of space. For each stream τ with length
|τ| ≤ ℓ, define Fτ to be the set of all possible outputs ofA corresponding to length-ℓ streams that have τ as a
prefix. Let ρ be a stream such that |τ|+ |ρ| ≤ ℓ. Then, by definition, Fτ◦ρ ⊆ Fτ whereas, by the correctness
ofA, Fτ◦ρ ∩ρ =∅. Now consider the AVOID problem over the universe Fτ , for a fixed τ: if Alice gets ρ ⊆Fτ

as an input, she could send Bob the state σ of A upon processing τ ◦ρ , whereupon Bob could determine
Fτ◦ρ (by repeatedly running A’s state machine starting at σ ), which would be a valid output.

Let us restrict this scenario to suffixes ρ of some fixed length t; we’ll soon determine a useful value for
t. By the above observations, were it the case that

∃τ ∈ [n]≤ℓ−t ∀ρ ∈ [n]t : |Fτ◦ρ | ≥ 1
2 |Fτ | , (1)

we would have a z-bit protocol for AVOID(|Fτ |, t, 1
2 |Fτ |). By the [CGS22] lower bound, we would have

z≥Ct for a universal constant C. On the other hand, if the opposite were true, i.e.,

∀τ ∈ [n]≤ℓ−t ∃ρ ∈ [n]t : |Fτ◦ρ |< 1
2 |Fτ | , (2)

then, starting from the empty stream ϵ, we could add a sequence of length-t suffixes ρ1, . . . ,ρd (where
d ≤ ⌊ℓ/t⌋) such that |Fρ1◦···◦ρd |< 2−d |Fϵ| ≤ 2−dn. Since A must produce some output at time ℓ, this would
be a contradiction for d ≥ logn. Thus, for a setting of t = Θ(ℓ/ logn), situation (1) must occur, implying a
lower bound of z = Ω(ℓ/ logn).

Relaxing “all outputs” to “common outputs”. Examining the above argument closely shows where it
fails for pseudo-deterministic algorithms. In constructing an AVOID protocol above, we needed the key
property that Fτ can be determined from just the state of A upon processing τ . For pseudo-deterministic
algorithms, if we simply define F ′τ to be “the set of all canonical outputs at time ℓ for continuations of τ ,”
we cannot carry out the above proof plan because this F ′τ cannot be computed reliably from a single state:
given a random state σ associated to τ , on average a δ fraction of the outputs might be incorrect and have
arbitrary values; even a single bad output could corrupt the union calculation!

To work around this issue, we replace Fτ with a more elaborate recursive procedure FINDCOMMONOUT-
PUTS, (or FCO for short) that computes the “most common outputs” at time ℓ for a certain distribution over
continuations of τ . To explain this, let us imagine positions 1 through ℓ in the input stream as being divided
into d contiguous “time intervals.” In the deterministic proof, these intervals were of length t each. Given
a stream τ that occupies the first d− k of these intervals, Fτ can be thought of as the output of a procedure
FINDALLOUTPUTS (or FAO for short) where FAO(A,τ,k) operates as follows: for each setting ρ of the
(d− k+1)th time interval, call FAO(A,τ ◦ρ,k−1) and return the union of the sets so obtained. In the base
case, FAO(A,τ,0) takes a stream τ ∈ [n]ℓ and returns the singleton set {A(τ)}. The deterministic argument
amounts to showing that, with interval lengths t = Θ(z), the set FAO(A,τ,k) has cardinality ≥ 2k; since
FAO(A, ϵ,d) has cardinality ≤ n, this bounds d ≤ logn, which lower-bounds z.

For our pseudo-deterministic setting, we use time intervals as above and we design an analogous proce-
dure FCO(B,C,τ,k) that operates on a function B : [n]ℓ→ [n] (roughly corresponding to an MIF algorithm),
a matrix C of random thresholds,10 and a stream τ of length ≤ ℓ that occupies the first d− k time intervals.

10The use of random thresholds is a standard trick for robustly computing quantities in the presence of noise.
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The recursive structure of FCO(B,C,τ,k) is similar to FAO, but crucially, the sets computed by the recursive
calls FCO(B,C,τ ◦ρ,k−1) are used differently. Instead of simply returning their union, we use these sets to
collect statistics about the outputs in [n] and return only those that are sufficiently common. The thresholds
in C control the meaning of “sufficiently common.”

The function B provided to FCO can be either the canonical output function Π of the given pseudo-
deterministic algorithm B or a deterministic algorithm A∼B obtained by fixing the random coins of B. We
will show that:

• With high probability over C and the randomness of B, FCO will produce the same outputs on Π and
B. In other words, FCO is robust to noise (i.e., to algorithm errors).

• When applied to the canonical algorithm, the cardinalities of the sets returned by FCO will grow
exponentially with k. Equivalently, similar to |Fτ | from the deterministic proof, the cardinality of
FCO(τ, . . .) will shrink exponentially as the length |τ| grows. Ultimately, this is proven by implement-
ing AVOID using FCO on the actual algorithm as a subroutine. Critically, this implementation uses the
fact that the recursive calls to FCO w.h.p. produce the same output on Π and B.

• The argument can be carried out with all but one of the d time intervals being of length ≈ Θ(z). If
z were too small, d would be large enough that for the empty stream prefix we would have |FCO(ϵ
, . . .)|> n, which contradicts FCO(. . .)⊆ [n]; this lets us derive a lower bound on z.

Error amplification and the case n≫ ℓ. One technical issue that arises is that the correctness of FCO

requires B’s error probability to be as small as 1/nΩ(logn). Fortunately, even if the original error probability
was 1/3, we can reduce it to the required level since pseudo-deterministic algorithms allow efficient error
reduction by independent repetition. A second technical point is that a z-space pseudo-deterministic algo-
rithm can be shown to have only O(2z) possible outputs; so if n≫ ℓ, we can sometimes obtain a stronger
lower bound by pretending that n is actually O(2z). This is formalized by a simple encoding argument.

3 Preliminaries

Notation. Throughout this paper, logx = log2 x, while lnx = loge x. The set N consists of all positive
integers; [k] := {1,2, . . . ,k}; and [a,b) is a half open interval of real numbers. For a condition or event E, the
symbol 1E takes the value 1 if E occurs and 0 otherwise. The sequence (stream) obtained by concatenating
sequences a and b, in that order, is denoted a ◦ b. For a set S of elements in a totally ordered universe,
SORT(S) denotes the sequence of elements of S in increasing order;

(S
k

)
is the set of k-element subsets

of S; and SEQS(S,k) = {SORT(Y ) : Y ∈
(S

k

)
}. We sometimes extend set-theoretic notation to vectors and

sequences; e.g., for y ∈ [n]t , write y ⊆ S to mean that ∀i ∈ [t] : yi ∈ S. For a set X , △[X ] denotes the set of
probability distributions over X , while A∈R X indicates that A is chosen uniformly at random from X . When
naming probability distributions, we will use either calligraphic letters (e.g., A,D) or the letter µ; A ∼ µ

means that A is drawn from the distribution µ .

3.1 Useful Lemmas

These will be used in following sections. When no external work is cited, a proof is given for completeness
either here or in Appendix A.1.
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Lemma 3.1 (Multiplicative Azuma’s inequality). Let X1, . . . ,Xt be [0,1] random variables, and α ≥ 0. If,
for all i ∈ [t], E[Xi | X1, . . . ,Xi−1]≤ pi, then

Pr

[
t

∑
i=1

Xi ≥ (1+α)
t

∑
i=1

pi

]
≤ exp

(
−((1+α) ln(1+α)−α)

t

∑
i=1

pi

)
≤ exp

(
− α2

2+α

t

∑
i=1

pi

)
.

On the other hand, if for all i, E[Xi | X1, . . . ,Xi−1]≥ pi, then

Pr

[
t

∑
i=1

Xi ≤ (1−α)
t

∑
i=1

pi

]
≤ exp

(
−((1−α) ln(1−α)+α)

t

∑
i=1

pi

)
≤ exp

(
−α2

2

t

∑
i=1

pi

)
.

In contrast to the above, the “usual” form of Azuma’s inequality uses a martingale presentation and gives an
additive-type bound.

Lemma 3.2 (Chernoff bound with negative association, from [JP83]). The standard multiplicative Chernoff
bounds work with negatively associated random variables.

Lemma 3.3 (Error amplification by majority vote). Let ε ≤ δ ≤ 1/3. Say X is a random variable, and v
a value with Pr[X = v] ≥ 1− δ . If X1, . . . ,Xp are independent copies of X, then the most common value in
(X1, . . . ,Xp) will be v with probability ≥ 1− ε , for ε = (2δ )p/30.

The above is a standard lemma, useful for trading error for space for algorithms with a single valid output.
As outlined in Section 2.2, AVOID(m,a,b) is a one-way communication problem, wherein player Alice

has a set A ∈
(
[m]
a

)
, and should send a short message to player Bob, who should use the message to output

a set B ∈
([m]

b

)
that is disjoint from A. In the randomized δ -error setting, this disjointness should hold with

probability ≥ 1−δ .

Theorem 3.4 (AVOID communication lower bound, from [CGS22]). Suppose there exists a randomized
protocol for AVOID(m,a,b), in which Alice communicates ≤ K bits, that is δ -error either on a worst-case
input or when Alice’s input is chosen uniformly at random from

(
[t]
a

)
. Then

K ≥ ab
t ln2

+ log(1−δ ) .

Using Theorem 3.4, it is straightforward to derive the following lower bound for robust algorithms for
MIF(n, ℓ), as was done in [Sto23]. The proof is short, yet instructive, so we outline it here.

Theorem 3.5 (Adversarially robust random oracle lower bound, from [Sto23]). If there exists a δ -error
adversarially robust random oracle algorithm for MIF(n, ℓ) using z bits of space, then

z≥ ℓ2

4n ln2
+ log(1−δ ) .

Proof. Such an algorithm A yields a z-bit δ -error randomized protocol for AVOID(n,⌈ℓ/2⌉,⌊ℓ/2⌋+ 1)
wherein Alice feeds her set A into A, sends the state of A to Bob, and Bob extracts set B by using the
“echo” adversarial strategy, i.e., repeatedly asking A for an output item and feeding that item back as the
next input. The result now follows by appealing to Theorem 3.4.

We also note the following simple lower bound.

Lemma 3.6. For every δ < 1, if there exists a δ -error random tape algorithm for MIF(n, ℓ) using z bits of
space, then z≥ log(ℓ+1).
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Proof. Each state of a random tape streaming algorithm A has a unique associated output value. If z <
log(ℓ+1), then A has at most ℓ states. Let H be the set of outputs associated with these states; so |H| ≤ ℓ.
When sent a stream containing each element of H, A will fail with probability 1 because every output it
could make is wrong.

By the remarks in Section 1.1 following the definitions of the models of computation, Theorem 3.5 also
applies to random tape and random seed algorithms and Lemma 3.6 also applies to random seed algorithms.

4 The Random Tape Lower Bound

This section presents our first and perhaps most important lower bound, of which Result 1 is a consequence.
We shall carry out the proof plan outlined in Section 2.2, designing a recursive adversary to foil a given
random-tape MIF algorithm A that runs in z bits of space. Correspondingly, our lower bound proof will be
inductive.

4.1 Setup and Base Case

Recall that the adversary organizes the ℓ-length input to be fed into A as a random prefix of length ℓ/2
followed by another ℓ/2 inputs divided into several phases, each consisting of t = O(ℓ/z) inputs. The
adversary’s eventual goal is to identify a particular phase and a corresponding sub-universe W ⊆ [n] so that
A, when suitably conditioned and restricted to that phase, yields a sub-algorithm B that is good for MIF

for inputs from W . However, we will need to generalize the notion of a “good” MIF algorithm, because
this sub-algorithm might produce outputs outside of W , even when fed inputs from W . To aid our analysis,
we will make B abort anytime it would have produced an output outside of W . In what follows, it will be
important to maintain a distinction between these aborts and actual mistakes.

Definition 4.1. An algorithmA for MIF(n, ℓ) can fail in either of two ways. It may make an incorrect output,
or mistake, if outputs an element in [n] that is in its input stream (i.e., not missing). It may also abort, by
outputting a special value ⊥ (where ⊥ /∈ [n]) and stopping its run.

For integers n, ℓ,z with 1 ≤ ℓ < n, and γ ∈ [0,1], let ALGS(n, ℓ,γ,z) be the set of all z-bit random tape
algorithms for MIF(n, ℓ) which on any adversary abort with probability ≤ γ . Define

∆(n, ℓ,γ,z) := min
A∈ALGS(n,ℓ,γ,z)

δmax(A,n, ℓ) ,

where δmax(A,n, ℓ) is the maximum probability, over all possible adversaries, that A makes a mistake. As a
consequence of the definition, ∆(n, ℓ,γ,z) is non-increasing in γ and z.

We shall establish Result 1 (concretely, Theorem 4.8) using a proof by induction. The base case is
straightforward and handled by the following lemma.

Lemma 4.2 (Base case). If a random tape adversarially robust algorithm MIF(n, ℓ) uses at most ℓ2/(16n ln2)
bits of space and aborts with probability ≤ 1

2 , then it makes a mistake with probability ≥ 1
4 . Equivalently,

∆(n, ℓ,γ,z)≥ 1
4
1z≤ℓ2/(16n ln2)1γ≤1/2 . (3)

Proof. Suppose that γ ≤ 1
2 . Let A ∈ ALGS(n, ℓ,γ,z) be an algorithm with mistake probability δ ≤ 1

4 . Blur-
ring the distinction between aborts and mistakes, and applying the space lower bound for random oracle
algorithms (Theorem 3.5), we obtain

z≥ ℓ2

4n ln2
+ log(1− γ−δ )≥ ℓ2

4n ln2
−2 >

ℓ2

16n ln2
.
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The latter inequality holds because z≥ 1 (trivially) and we have max(1,x−2)> x/4. Taking the contrapos-
itive, if z≤ ℓ2/(16n ln2), then δ > 1/4. This proves eq. (3).

4.2 The Induction Step

The induction step consists of a reduction, using an adaptive adversary described in Listing 2, to prove a
lower bound on the mistake probability. This is formalized in the next lemma and the rest of Section 4.2 is
devoted to its proof.

Lemma 4.3 (Induction lemma). Let 1≤ ℓ < n and z be integers. Define, matching definitions in Listing 2,

w := 2
⌊

32
zn
ℓ

⌋
and t :=

⌊
ℓ

64z

⌋
. (4)

If z≥ 8 and t < w, then:

∆

(
n, ℓ,

1
2
,z
)
≥min

(
ℓ

27nk
,

1
4

∆

(
w, t,

1
2
,z
))

. (5)

The Initial Random Prefix. The adversary begins by sending A a uniformly random sequence X ∈R

SEQS([n],q), i.e., a sorted sequence of q distinct elements of [n]; we’ll eventually use q = ⌈ℓ/2⌉. Let F be
the random function where, for x ∈ SEQS([n],q), F(x) is the random state reached by A upon processing x,
starting at its initial state; note that F is determined by the transition function T of A (see Section 1.1). Let
Σ be the set of states of A, so |Σ|= 2z. For each σ ∈ Σ, define

Hσ :=
{

i ∈ [n] : Pr[i ∈ X | F(X) = σ ]≤ q
4n

}
, (6)

which we can think of as the set of inputs that are “unlikely” to have been seen given that A has reached σ .
A key part of our proof of Lemma 4.3 is the following lemma, which says that if Σ is small, then A doesn’t
have enough space to mark too many inputs as unlikely, so HF(X) is likely to be small. The lemma can be
seen as a smoothed variant of the communication lower bound for AVOID.

Lemma 4.4. Let Σ be a set with |Σ| ≤ 2z, let 1 ≤ q ≤ n be integers, let F be a random function that maps
each sequence in SEQS([n],q) to a random element of Σ, and let X ∈R SEQS([n],q), chosen independently of
F. For each σ ∈ Σ, define Hσ as in eq. (6). Then, for all α ∈ (0,1),

Pr
[∣∣HF(X)

∣∣≥ ŵ
]
≤ α where ŵ :=

⌈
2ln2

1− ln2
z+1+ log 1

α

q
n

⌉
.

Proof. Consider a specific σ ∈ Σ. By linearity of expectation:

E

[
∑

i∈Hσ

1i∈X

∣∣∣ F (X) = σ

]
= ∑

i∈Hσ

Pr [i ∈ X | F (X) = σ ]≤ q
4n
|Hσ | .

Then by Markov’s inequality,

Pr

[
∑

i∈Hσ

1i∈X ≥ 2 · q
4n
|Hσ |

∣∣∣ F (X) = σ

]
≤ 1

2

which implies Pr

[
∑

i∈Hσ

1i∈X ≤
q
2n
|Hσ |

∣∣∣ F (X) = σ

]
≥ 1

2
.
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Since X is drawn uniformly at random from SEQS([n],q), the random variables {1i∈X}i∈[n] are negatively
associated, with E1i∈X = q/n for each i ∈ [n]. For any set A⊆ [n], we use the multiplicative Chernoff bound
(Lemma 3.2) to bound the probability that X’s overlap with A is much smaller than the expected value:

Pr

[
∑
i∈A

1i∈X ≤
(

1− 1
2

)
· q

n
|A|

]
≤

(
e−1/2

(1/2)1/2

)(q/n)|A|

= exp
(
−1

2
(1− ln2)

q
n
|A|
)
.

We now bound

Pr [F (X) = σ ]≤
Pr
[
∑i∈Hσ

1i∈X ≤ q
2n |Hσ |

]
Pr
[
∑i∈Hσ

1i∈X ≤ q
2n |Hσ |

∣∣ F(X) = σ
] ≤ 2exp

(
−1

2
(1− ln2)

q
n
|Hσ |

)
.

Finally, let B = {σ ∈ Σ : |Hσ | ≥ ŵ}. Then

Pr
[∣∣HF(X)

∣∣≥ ŵ
]
= ∑

σ∈B
Pr [F (X) = σ ]

≤ 2z ·2exp
(
−1

2
(1− ln2)

q
n

ŵ
)

≤ 2z ·2exp
(
−
(

z+1+ log
1
α

)
ln2
)
≤ 2z ·2 ·2−(z+1+log 1

α ) = α .

The Recursive Phases and Win-Win Argument. Let ρ denote the random state in Σ reached by A upon
processing the random sequence X . Having observedA’s outputs (transcript) in response to X , the adversary
can compute D, the distribution of ρ conditioned on this transcript. The adversary has ⌊ℓ/2⌋ more items
to send to A and it organizes these into phases of t items each (see eq. (4)). Recall, from the discussion in
Section 2.2, that the adversary’s goal is to identify a suitable sub-universe W ⊆ [n] so that, in some phase,
A can be seen as solving MIF(|W |, t) in this sub-universe. As it chooses a suitable input sequence for each
phase, the adversary maintains the following objects to guide the choice:

• the evolving transcript of A given the inputs chosen so far;

• the corresponding distribution D ∈△[Σ];

• a set Q⊆ Σ where, for each σ ∈ Q, the set Hσ will be useful for determining W .

If the current set Q leads to a suitable W , the adversary’s strategy for the next phase is to recursively run an
optimal sub-adversary for MIF(|W |, t). If not, then (we shall show that) over the next phase, the adversary
will be able to significantly shrink the set Q.

To make these ideas more concrete, we introduce some terminology below; these terms show up in
Listing 2, which spells out the adversary’s actions precisely.

Definition 4.5 (Divisive output sequence, Splitting adversary). LetA, Σ, and Hσ be as above and let Q⊆ Σ.
A sequence (of “outputs”) y ∈ [n]t is said to be DIVISIVE for Q if |{σ ∈ Q : y⊆ Hσ}| ≤ 1

2 |Q|.
Say ϒ is a t-length deterministic adversary, i.e., a function ϒ : [n]≤t−1 → [n]. For each σ ∈ Σ, let

OUTS(σ ,ϒ) be the random variable in [n]t ∪ {⊥} that gives the output if we run A, starting at state σ ,
against the adversary ϒ,11 with⊥ indicating thatA aborts. We say that ϒ is α-SPLITTING for Q with respect
to a distribution D ∈△[Σ] if

Pr
S∼D

[OUTS(S,ϒ) is divisive for Q]≥ α ,

with the convention that the value ⊥ is divisive.12

11This means that if, after processing a few inputs, the algorithm has output sequence v ∈ [n]⋆, its next input will be ϒ(v).
12The proof can also be made to work if one assumes ⊥ is not divisive, but gives a weaker and more complicated result.
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Notice that, knowing D and Q, the adversary can determine whether a given ϒ is α-splitting. This is
implicit in Line 8 of Listing 2.

Listing 2 An adversary for a random tape MIF(n, ℓ) algorithm.

ADVERSARY (against algorithm A)

1: w← 2⌊32zn/ℓ⌋; hmax← 32z; t← ⌊ℓ/(2hmax)⌋
2: X ← a uniformly random sequence in SEQS([n],⌈ℓ/2⌉).
3: send X to A and record the transcript of outputs
4: compute Hσ for each state σ using eq. (6), with q = ⌈ℓ/2⌉
5: Q0←{σ ∈ Σ : |Hσ | ≤ 1

2 w}
6: for h in 1, . . . ,hmax do
7: D← distribution over Σ conditioned on the cumulative transcript so far
8: if ∃ a t-length deterministic adversary ϒ that is 1

2 -splitting for Qh−1 w.r.t. D then
9: run ϒ against A and gather the transcript of outputs y ∈ [n]t

10: Qh←{σ ∈ Qh−1 : y⊆ Hσ} ▷ have a ≥ 1
2 chance that |Qh| ≤ 1

2 |Qh−1|
11: if Qh =∅ then fail
12: else
13: W ←{i ∈ [n] : |{σ ∈ Qh−1 : i ∈ Hσ}| ≥ 1

2 |Qh−1|} ▷ will show that |W | ≤ w
14: W ′←W plus w−|W | padding elements
15: define algorithm B to behave like A conditioned on the transcript of inputs and outputs so far
16: modify B, changing every output outside W ′ to ⊥ ▷ thus B will abort in these cases
17: let Ξ be an adversary using inputs from W ′, maximizing the probability that B makes a mistake

▷ can be computed using brute-force search
18: run adversary Ξ, sending t inputs in W ′

19: return ▷ succeeded in causing A to have a high enough error probability
20: fail

We proceed to prove the induction lemma.

Proof of Lemma 4.3. To prove the lower bound in eq. (5), we show that when the adversary in Listing 2 is
run against a z-bit random-tape algorithmA for MIF(n, ℓ) which has ≤ 1

2 worst-case probability of aborting,
the probability thatAmakes a mistake is at least the right hand side of eq. (5). Note that the adversary feeds
at most ⌈ℓ/2⌉+ thmax = ⌈ℓ/2⌉+ ⌊ℓ/(2hmax)⌋hmax ≤ ⌈ℓ/2⌉+ ⌊ℓ/2⌋= ℓ inputs to A.

Consider a run of the adversary against A. This is a random process, with some of the randomness
coming from the adversary’s choices (Line 2) and some coming fromA’s internal randomness. Let ρ be the
state of A after X is sent. We now define a number of events, as follows.

• BUNSAFE occurs if A produces an output in [n]\Hρ .

• BBIG occurs if the state ρ has |Hρ |> 1
2 w.

• BEMPTY occurs if the adversary fails at Line 11.

• BTIMEOUT occurs if the adversary fails at Line 20.

• BABORT occurs if A aborts before the adversary reaches Line 18.

• RERROR occurs if A makes a mistake while the adversary is executing Line 18.

We will consider each of the events listed above.
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(Event BUNSAFE) If BUNSAFE occurs, then some i ∈ [n] \Hρ is output and, in view of eq. (6), the set X
from Line 2 has the property that

Pr[i ∈ X | A reaches ρ]≥ ⌈ℓ/2⌉
4n
≥ ℓ

8n
.

Consequently, the probability that A makes a mistake by producing an output from X (which would be a
non-missing item) is ≥ Pr[BUNSAFE] · ℓ/(8n).

If Pr[BUNSAFE]> 1/(16), we then have ∆(n, ℓ, 1
2 ,z)≥ ℓ/(27n), which implies eq. (5) leaving nothing more

to prove. Therefore, for the rest of this proof we will consider the case in which

Pr[BUNSAFE]≤
1

16
. (7)

(Event BBIG) We apply Lemma 4.4 with q = ⌈ℓ/2⌉, α = 1/16, F being the random function that maps
each x ∈ SEQS([n],q) to the random state reached by A upon processing x, starting at its initial state, and

ŵ =

⌈
2ln2

1− ln2
z+1+ log16
⌈ℓ/2⌉

n
⌉
≤ 1+

⌊
2ln2

1− ln2
z+1+ log16
⌈ℓ/2⌉

n
⌋

≤ 1+
⌊

8ln2
1− ln2

z+1+ log16
ℓ

n
⌋

≤ 1+
⌊

19
z+5
ℓ

n
⌋
≤ 1+

⌊
32

zn
ℓ

⌋
=

1
2

w+1 ,

since z≥ 8. As 1
2 w is an integer,

Pr [BBIG] = Pr
[
|Hρ |>

1
2

w
]
= Pr

[
|Hρ | ≥

1
2

w+1
]
≤ Pr

[
|Hρ | ≥ ŵ

]
≤ 1

16
. (8)

(Event BABORT) There are exactly exactly three spots in Listing 2 where the algorithm can abort:
Lines 3, 9 and 18, when the adversary is feeding it inputs. By assumption, A’s worst case probability
of aborting, against any adversary, is at most 1

2 . Therefore, in particular,

Pr[BABORT]≤
1
2
. (9)

When the algorithm does abort, we stop running the adversary, so BABORT, BEMPTY, and BTIMEOUT are mutually
exclusive.

(Event BEMPTY) For this to happen, at some point we must have Qh =∅. At that point, the state ρ must
not be in Qh, in which case either ρ /∈ Q0 or ρ was filtered out of Qh on Line 10. By the definition of Q0,
ρ /∈Q0 iff BBIG holds. On the other hand, filtering ρ out of Qh requires that the algorithm produce an output
outside Hρ , which can only happen if either BUNSAFE or BABORT occurs. Since BABORT is mutually exclusive
with BEMPTY, we conclude that

BEMPTY⇒ BUNSAFE ∨BBIG . (10)

(Event BTIMEOUT) We bound the probability that the adversary will fail using Line 20. For this to
happen, the adversary must have picked hmax splitting adversaries, but fewer than z+ 1 of them must have
produced a divisive output. (If there is a divisive output in round h, then |Qh| ≤ 1

2 |Qh−1|; if not, then
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|Qh| ≤ |Qh−1|. Thus with z+1 divisive outputs, |Qhmax | ≤ |Q0|/2z+1 ≤ |Σ|/2z+1 ≤ 1
2 < 1, in which case the

adversary would have failed at Line 11 instead.)

For each h ∈ [hmax], let Xh be the {0,1} indicator random variable for the event that a divisive output is
found in the hth step. (If the hth step did not occur or no splitting adversary was found, set Xh = 1.13) Since
in the hth step, a splitting adversary for the distribution for the current state of the algorithm, conditioned on
the transcript so far, is chosen, then E[Xh | X1, . . . ,Xh−1]≥ 1/2. Applying Lemma 3.1 gives:

Pr
[

∑
h∈[hmax]

Xh < z+1
]
= Pr

[
∑

h∈[hmax]

Xh ≤
(

1−
(

1− 2z
hmax

))
hmax

2

]

≤ exp

(
−1

2

(
1− 2z

hmax

)2 hmax

2

)

≤ exp
(
−1

8
hmax

2

)
since hmax = 32z≥ 4z

≤ 1
8
. since hmax ≥ 16ln8

Thus Pr[BTIMEOUT]≤ 1/8.

Combining this with eqs. (7) to (10) gives:

Pr[BEMPTY ∨BTIMEOUT ∨BABORT]≤ Pr[BUNSAFE ∨BBIG ∨BTIMEOUT ∨BABORT]

≤ Pr[BUNSAFE]+Pr[BBIG]+Pr[BTIMEOUT]+Pr[BABORT]

≤ 1
16

+
1
16

+
1
8
+

1
2
=

3
4
. (11)

(Event RERROR) Let E be the event that the adversary executes Line 18. Notice that RERROR can only
occur when E occurs. Note also that

E = ¬BEMPTY ∧¬BTIMEOUT ∧¬BABORT ,

so eq. (11) implies that

Pr[E]≥ 1
4
. (12)

Suppose that E does occur. We now make two claims: (a) that |W | ≤w, and (b) that B ∈ALGS(w, t, 1
2 ,z).

For the first claim, note that by Line 5, the set Q0 only contains states σ ∈ Σ with |Hσ | ≤ 1
2 w. The same

bound on |Hσ | holds for all σ ∈ Qh−1 because Qh−1 ⊆ Q0, thanks to Line 10. By the definition of W
(Line 13),

|W |=
∣∣∣∣{i ∈ [n] :

|{σ ∈ Qh−1 : i ∈ Hσ}|
|Qh−1|

≥ 1
2

}∣∣∣∣
≤ ∑

i∈[n]

2|{σ ∈ Qh−1 : i ∈ Hσ}|
|Qh−1|

=
2

|Qh−1| ∑
σ∈Qh−1

|Hσ | ≤
2

|Qh−1|
· |Qh−1| ·

1
2

w = w ,

13Note that this definition accounts for the cases where the algorithm aborts: if it aborts on h, by Definition 4.5 this is interpreted
as divisive, and the following steps do not occur, so Xh =Xh+1 = . . . ,Xhmax = 1. Then the event {∑Xh < z+1} slightly overestimates
the probability of BTIMEOUT; it would be more accurate to have A aborting produce Xh = ∞.
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which proves claim (a).

For the second claim, consider the sub-algorithm B′ defined as B just before the modification at Line 16.
Then, for a particular adversary ϒ, running ϒ against B causes an abort exactly when running ϒ against B′
causes either an abort or an output outside W ′. In the iteration of the for loop that caused E, since we reached
the else branch, there was no deterministic splitting adversary with respect to D. Thus for any deterministic
adversary ϒ, by Definition 4.5,

Pr
σ̂∼D

[OUTS(σ̂ ,ϒ) is divisive for Qh−1]≤
1
2
.

Let y be a realization of the random variable OUTS(σ̂ ,ϒ); note that y∈ [n]t∪{⊥}. If a given y is not divisive,
then y ∈ [n]t and, for each i ∈ y,

|{σ ∈ Qh−1 : i ∈ Hσ}| ≥ |{σ ∈ Qh−1 : y⊆ Hσ}| ≥
1
2
|Qh−1| ,

which implies that i ∈W . Thus in fact y ⊆W . It follows that the probability that running ϒ against B′
causes an abort or an output outside W (which is a subset of W ′) is at most 1

2 . Viewing B as a random-
tape MIF algorithm handling input streams of length at most t, with items from W ′, in the terminology of
Definition 4.1, we have B ∈ ALGS(w, t, 1

2 ,z). This proves claim (b).

Since Ξ is picked to maximize the probability of B making a mistake, we have Pr[RERROR | E] ≥
∆(w, t, 1

2 ,z). Using eq. (12), we obtain

Pr[RERROR]≥ Pr[E]∆
(

w, t,
1
2
,z
)
≥ 1

4
∆

(
w, t,

1
2
,z
)
.

Combining this lower bound with the lower bound for the case where Pr[BUNSAFE]>
1

16 (considered just
before eq. (7)), we obtain

∆

(
n, ℓ,

1
2
,z
)
≥min

(
ℓ

27n
,

1
4

∆

(
w, t,

1
2
,z
))

.

4.3 Calculating the Lower Bound

Lemma 4.6. Let 1≤ ℓ < n. For any integer k ≥ 1, say that z is an integer satisfying z≤ 1
256ℓ

1/k. Then:

∆(n, ℓ,0,z)> min
( ℓ

27n
,

1
4k1z≤L

)
where L =

1
64

(
ℓk+1

n

) 2
k2+3k−2

. (13)

Consequently, algorithms for MIF with ≤min( ℓ
27n ,4

−k) error require > L bits of space.

Proof of Lemma 4.6. Let n1 = n and ℓ1 = ℓ, and for i = 2, . . . ,k, set ni = 2
⌊

32 zni−1
ℓi−1

⌋
and ℓi =

⌊
ℓi−1
64z

⌋
. This

matches the definitions used in Lemma 4.3. As we have been promised that z≤ 1
256ℓ

1/k, we have in particular
that:

(256z)k ≤ ℓ which implies ℓ1 ≥ ·· · ≥ ℓk ≥ 256z .

By Lemma 3.6, we only need to consider the case z ≥ log(ℓ+ 1), as otherwise ∆(n, ℓ,0,z) = 1. Thus, if
k ≥ 2, we have:

z≥ log(ℓ+1)≥ k log(256z)≥ k log(256) = 16≥ 8 .
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(If k = 1, then eq. (13) follows immediately from Lemma 4.2.)
Since ∆(n, ℓ,0,z)≥ ∆(n, ℓ,1/2,z), it suffices to lower bound the case where algorithms are permitted up

to 1/2 abort probability. We will lower bound ∆(n, ℓ,1/2,z) by recursively applying Lemma 4.3 k−1 times,
and then applying Lemma 4.2. This yields:

∆(n, ℓ,1/2,z)≥min
( ℓ1

27n1
,
1
4

∆(n1, ℓ1,1/2,z))

≥min
( ℓ1

27n1
,
1
4

min
( ℓ2

27n2
, . . .

1
4

min
( ℓk−1

27nk−1
,
1
4
1z≤ℓ2

k/(16nk ln2)

)
. . .
))

≥min
( ℓ1

27n1
,
1
4

ℓ2

27n2
, . . . ,

1
4k−1

ℓk−1

27nk−1
,

1
4k1z≤ℓ2

k/(16nk ln2)

)
.

Only the first and last terms of the minimum are significant, because the terms for i = 2, . . . ,k−1 are all
dominated by the first term:

ℓi

ni
=

⌊
ℓi−1
64z

⌋
2
⌊

32 zni−1
ℓi−1

⌋ ≥ 1
2
ℓi−1

64z
ℓi−1

64zni−1
≥ ℓi−1

2(64z)2
ℓi−1

ni−1
≥ 4

ℓi−1

ni−1
,

where in the last step, we used the fact that ℓi−1 ≥ ℓk−2 ≥ (256z)2. Thus:

∆(n, ℓ,0,z)≥min
(

ℓ

27nk
,

1
4k1z≤ℓ2

k/(16nk ln2)

)
.

We have almost proven eq. (13). It remains to lower bound 1z≤ℓ2
k/(16nk ln2) by 1z≤L for some L. We do so

by proving z > ℓ2
k/(16nk ln2) implies z > L. As a consequence of the definitions, we have:

ℓi =

⌊
ℓi−1

64z

⌋
=


⌊
ℓi−2
64z

⌋
64z

= · · ·=
⌊

ℓ

(64z)i−1

⌋
and ni ≤ 64

zni−1

ℓi−1
,

and thus:

z >
ℓ2

k
16ln2

1
nk
≥

ℓ2
k

16
∏

k−1
k=1 ℓk

(64z)k−1n

≥ ℓk+1

16 · (64z)2(k−1)+(k−2)+(k−3)+···+1+0(64z)k−1n

=
ℓk+1

16 · (64z)(k2+3k−4)/2n
.

Rearranging to put all the z terms on the left gives:

64z · (64z)
k2+3k−4

2 ≥ 64
ℓk+1

16n
,

which implies

z >
1
64

(
64ℓk+1

16n

) 2
k2+3k−2

≥ 1
64

(
ℓk+1

n

) 2
k2+3k−2

.
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Now, say a random tape algorithm has error probability ≤ ℓ
27n against any adaptive adversary, and uses

z bits of space. If ℓ≥ n2/3, it is easy to show that the optimal value of k with which to apply Lemma 4.6 is
1. Otherwise, for all k, we have two cases: if z ≤ 1

256ℓ
1/k, then we can apply Lemma 4.6. By Lemma 3.6,

z log(ℓ+1)≥ 1, which implies (256)k ≤ ℓ and thus k ≤
⌊1

8 logℓ
⌋
. As the algorithm has

error≤ ℓ

27n
≤min(

ℓ

27n
,

1
27ℓ1/2 )≤min(

ℓ

27n
,

1
4k ) ,

by Lemma 4.6 the algorithm’s space usage must satisfy:

z≥ 1
64

(
ℓk+1

n

) 2
k2+3k−2

.

Since we either have this lower bound on z, or z > 1
256ℓ

1/k, it follows that for any integer k ≥ 1:

z≥ 1
256

min

ℓ1/k,

(
ℓk+1

n

) 2
k2+3k−2

 .

We can take the maximum over all values of k to obtain:

z≥ 1
256

max
k∈N

min
(
ℓ1/k,

(
ℓk+1

n

) 2
k2+3k−2 )

.

The right hand side can be simplified with the following lemma, whose proof is mostly calculation and is
deferred to Appendix A.2:

Lemma 4.7.

max
k∈N

min

ℓ1/k,

(
ℓk+1

n

) 2
k2+3k−2

≥max
k∈N

(
ℓk+1

n

) 2
k2+3k−2

≥ ℓ
15logℓ
32logn (14)

Summarizing, we obtain the following theorem.

Theorem 4.8. Random tape δ -error adversarially robust algorithms for MIF(n, ℓ) require

Ω

max
k∈N

(
ℓk+1

n

) 2
k2+3k−2

= Ω

(
ℓ

15
32 logn ℓ

)
bits of space, for δ ≤ ℓ/(27n).

4.4 Remarks on the Lower Bound

To prove the above lower bound, we required δ ≤ ℓ
27n . For larger values of δ , random tape algorithms can

be much more efficient. For example, there is a (log t)-space algorithm for MIF(n, ℓ) with O(ℓ2/t) error
probability, which on every input randomly picks a new state (and output value) from [t].

That being said, if a random tape algorithm A with error ≤ δ provides the additional guarantee that it
never makes a mistake (i.e, either produces a correct output or aborts),14 one can construct a new algorithm

14This guarantee essentially rules out the possibility of algorithms that randomly and blindly guess outputs. Most of the algo-
rithms for MIF in this paper and in [Sto23] provide this “zero-mistake” guarantee.
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B with error O(1
n) by running Θ( logn

log1/δ
) parallel copies of A and reporting outputs from any copy that has

not yet aborted. Proving a space lower bound for B then implies a slightly weaker one for A.
The lower bound of Theorem 4.8 is not particularly tight, and we suspect it can be improved to match the

upper bound within polylog(ℓ,n) factors. There are at least two scenarios that we suspect algorithms must
behave similarly to, in which we could do better than the current adversary’s reduction to MIF(w,Θ(ℓ/z))

• If a constant fraction of the next ℓ/2 outputs are contained in W , we could (essentially) reduce to
MIF(w, ℓ/2).

• If on each search step of length Θ(ℓ/z), the outputs of the algorithm are concentrated in a new set of
size Θ(w/z), then we could (essentially) reduce to MIF(Θ(w/z),Θ(ℓ/z)).

The adversary of Listing 2 runs in doubly exponential time, and requires knowledge of the algorithm.
The former condition cannot be improved by too much: if one-way functions exist, one could implement
the random oracle algorithm for MIF(n, ℓ) from [Sto23] using a pseudo-random generator that fools all
polynomial-time adversaries. One can also prove by minimax theorem that universal adversaries for (random
tape or otherwise) MIF(n, ℓ) algorithms can not be used to prove any stronger lower bounds than the one for
random oracle algorithms.

5 The Random Tape Upper Bound

In this section, we describe an adversarially robust random tape algorithm for MIF(n, ℓ) which obtains error
≤ δ . See Section 2.1 for a high level overview. The algorithm, shown in Listing 3, can be implemented for
almost all pairs ℓ < n, requiring only ℓ≤ n/64 and ℓ≥ 4 for its parameters to be meaningful. It can be seen
as a multi-level generalization of the random oracle algorithm from [Sto23].

L1=[1,3,5,6]
x1=[1,0,0,1] x3=[1,0,1]x2=[1,0,0]

L2=[1,3,4] L3=[1,2,3]

= nodes that are no
 longer in memory

the current output

definitely no
inputs here

have an input
in this region

blocks outside
list are ignored

unsafesafeactivepast

Figure 3: Diagram showing the state of the algorithm in Listing 3 and how it relates to the parts of the implicit random
tree that the algorithm traverses. Positions on the horizontal axis correspond to different integers in [n]. To keep the
example legible, we set parameters d = 3, w1 = 7,w2 = 4,w3 = 3, and b1 = 4,b2 = 3,b3 = 3.

In order to prove that the algorithm in Listing 3 is correct, we will need some additional notation. Let
d,α,b1, . . . ,bd ,w1, . . . ,wd be as defined in Listing 3. It is helpful to view this algorithm as traversing over
the leaves of a random tree of height d, in which:

• Every node v in the tree is associated with a subset Sv of [n]. We say a node is at level i if it is at depth
i−1. All nodes at a given level have disjoint associated subsets.
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• The “root” ρ of the tree has Sρ of size ∏
d
i=1 wi, and is at level 1

• Each node v at level i (depth i−1) has bi+1 children; the set Sv is partitioned into wi+1 parts of equal
size, and each child of v is associated with a random and unique one of these parts

• Each leaf node u, at depth d, is associated with a set of size 1, i.e., a single and unique integer in [n].
There are ∏

d
i=1 bi leaf nodes in total.

See for example Figure 3. The algorithm maintains a view of just the branch of the tree from the root to the
current leaf node. Its output will be the number associated to this leaf. For each node v on this branch, at
level i∈ [d] (depth i−1), it keeps a record of the positions Li ∈ [wi]

bi of its children, and a record xi ∈ {0,1}bi

indicating their status. There are four categories for child nodes:

• A node is PAST if the traversal over the tree passed through and leaf the node; past nodes are marked
with a 1 in xi.

• A node is ACTIVE if it is on the branch to the current leaf node; this is the node with the lowest index
which is marked with a 0 in xi.

• A node v is SAFE if it comes after the active node, and the adversary has never sent an input in Sv;
safe nodes are marked with a 0 in xi.

• A node v is UNSAFE if it comes after the active node, and the adversary did send an input in Sv; unsafe
nodes are marked with a 1 in xi.

The algorithm maintains these records as the adversary sends new inputs, marking safe child nodes v as
unsafe if an element in Sv is received. The current leaf node is found by, from the root, following the chain
of active nodes. If the adversary sends the value of the current leaf node, the algorithm will mark it by
setting the corresponding entry in xd to 1, thereby changing the value of the current active node. If every
element of xd is a now 1, this means that the adversary has sent an input for every child of the level d node on
the current branch, so the algorithm marks the current active child of the level d−1 node with a 1, thereby
moving the current branch to use a new level d node, u, which is safe.15 It the “loads the positions of the
children of u”—the tree being randomly generated, this is implemented by Ld being randomly sampled and
xd being reset to be all zeros—and proceeds.

While there are ∏
d
i=1 bi leaf nodes in the ideal random tree, the algorithm’s traversal of them may skip a

fraction, because they (or one of their ancestors) were marked as unsafe. We say that such leaf nodes, along
with those which were once active, have been KILLED.

Listing 3 uses the following lemma to set some of its parameters; the specific rounding scheme for the
values b2, . . . ,bd−1 ensures that b1 can decrease relatively smoothly as ℓ decreases. (Setting all b2 = . . . =
bd−1 to ⌊α⌋ can lead to having b1 be significantly larger than necessary (by up to a factor (3/2)d = ℓO(1));
setting all b2 = . . .= bd−1 to ⌈α⌉ would violate the ∏

d
i=1 wi ≤ n constraint.)

Lemma 5.1. Let α ≥ 1. Then for all k ≥ 0, there exists an integer u depending on α and k so that

α
k ≤ ⌈α⌉u⌊α⌋k−u ≤ 2α

k .

Proof of Lemma 5.1. If α is an integer, we are done. Otherwise, with

u =

⌈
k log(α/⌊α⌋)
log(⌈α⌉/⌊α⌋)

⌉
, we have ⌈α⌉u⌊α⌋k−u = ⌊α⌋k(⌈α⌉/⌊α⌋)u ≥ ⌊α⌋k(⌈α/⌊α⌋⌉)k = α

k .

Similarly, ⌈α⌉u⌊α⌋k−u ≤ αk⌈α⌉/⌊α⌋, which is ≤ 2αk because α ≥ 1 implies ⌈α⌉/⌊α⌋ ≤ 2.

15If the level d−1 node has no children marked with a 0 after this, we repeat the process at level d−2, and so on.
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Listing 3 Adversarially robust random tape algorithm for MIF(n, ℓ) with error ≤ δ

Requirements: ℓ≤ n/64 and ℓ≥ 4.
Parameters: d = min(⌈logℓ⌉,

⌊
2 log(n/4)

log16ℓ

⌋
).

α =

2 if ⌈logℓ⌉<
⌊

2 log(n/4)
log16ℓ

⌋
(4ℓ)2/(d−1)

(n/4)2/(d(d−1)) otherwise

Let u be chosen via Lemma 5.1, so that αd−2 ≤∏
d−1
i=2 bi ≤ 2αd−2

b2 = . . .= bu = ⌈α⌉, and bu+1 = . . .= bd−1 = ⌊α⌋
b1 = min(ℓ+1,⌈8α⌉+ ⌈3log1/δ⌉); and bd =

⌈
ℓ

αd−1

⌉
w1 = 16ℓ; and for each i ∈ {2, . . . ,d}, wi = ∏

d
j=i b j.

Let ι : [w1]× [w2]×·· ·× [wd ]→ [n] be an arbitrary injective function

Initialization:
1: for i ∈ [d] do
2: Li← random sequence without repetition in [wi]

bi

3: xi← (0, . . . ,0) ∈ {0,1}bi

Update(a ∈ [n]):
4: if a /∈ ι−1[n] then return ▷ Any integer not in ι−1[n] can never be an output
5: v1, . . . ,vd = ι−1(a) ▷ Map input into [w1]× . . .× [wd ]
6: For i ∈ [d], define ci = min |{ j : xi[ j] = 0}|
7: if for all i ∈ [d], vi = Li[ci] then
8: ▷ Move to the next leaf node, sampling new child node positions as necessary ◁
9: for i = d, . . . ,1 do

10: xi[ci]← 1
11: if xi is the all-1s vector then
12: if i = 1 then abort ▷ If we reach i = 1, then even the root node is full
13: Li← random sequence without repetition in [wi]

bi

14: xi← (0, . . . ,0)
15: else break
16: else
17: ▷ Mark a branch as unsafe, if there was a hit ◁
18: Let j be the smallest integer in [d] for which v j ̸= L j[c j].
19: if ∃y ∈ [b j] for which L j[y] = v j then
20: x j[y]← 1

Output→ [n]:
21: For i ∈ [d], define ci = min |{ j : xi[ j] = 0}|
22: return ι [(L1[c1],L2[c2], . . . ,Ld [cd ])]
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The following lemma is straightforward but tedious, and we defer its proof to Appendix A.3.

Lemma 5.2. The parameters of Listing 3 satisfy the following conditions:

d

∏
i=2

bi ≥
ℓ

α
, (15)

d

∏
i=2

bi ≤
4ℓ
α

, (16)

∏
i∈[d]

wi ≤ n . (17)

We now prove the main lemma:

Lemma 5.3. Listing 3 has error ≤ δ in the adversarial setting.

Proof of Lemma 5.3. We prove, using a charging scheme, that the probability of all leaf nodes in the random
tree traversed by the algorithm being killed is ≤ δ .

The input of the adversary at any step falls into one of d +2 categories. For each i ∈ [d], it could add an
input which intersects the list of unrevealed child positions of the level i node, possibly killing ∏

d
j=i+1 bi leaf

nodes if it guesses correctly. It could also send the value of the current leaf node, thereby killing it (and only
it). Finally, the adversary’s input could be entirely wasted (outside ι([w1]× . . .× [wd ], repeating an input it
made before, or in the region corresponding to one of the past nodes in the random tree); then no leaf nodes
would be killed.

As the algorithm proceeds, for each node in the random tree (other than the root), we accumulate charge.
When the algorithm’s current branch changes to use new nodes, the charge on the old nodes is kept, and the
new nodes start at charge 0.

When the adversary makes an input that is handled by level i (”query” at level i), for i ∈ {2, . . . ,d}, it
first deposits one unit of charge at the active level i node. Then, if the query was a hit (i.e, ruled out some
future subtree and made a child of a node in the current branch change from “safe” to “unsafe”), increase
the number of killed nodes by the number of leaves for the subtree (namely, ∏

d
j=i+1 b j), and remove up to

that amount of charge from the node. The definitions of (w j) j=2,...,d ensure that ∏
d
j=i+1 b j = w j/b j.

For the tth query, let Kt be the number of killed leaf nodes on the query, minus any accumulated charge
on the node. Say the adversary picks a node at level i for i ∈ {2, . . . ,d−1}, and that node has ŵ unexplored
subtree regions (i.e, neither revealed because the algorithm produced outputs in them, nor because there was
there a query at that subtree region in the past), and b̂ gives the number of subtrees within this unexplored
region. If b̂ = 0, E[Kt |K1, . . . ,Kt−1] = 0. Otherwise, let u be the number of subtrees which were revealed by
the algorithm so far; we have ŵ≤ w j−u and b̂≤ b j−u. Then when we condition on the past increases in
charge, the subtree regions within the unexplored region are still uniformly random; hence the probability
of hitting a subtree is b̂/ŵ. The number of leaf nodes killed by a hit is w j/b j. The total charge currently at
the node must be ≥ (w j−u− ŵ)− (

w j
b j
)(b j−u− b̂) = b̂ w j

b j
− ŵ+(

w j
b j
−1)u≥ b̂ w j

b j
− ŵ, since each removed

node consumes at most w j
b j

of the existing charge. Consequently, the increase in killed leaf nodes if we hit is

max(0, w j
b j
−max(0, b̂ w j

b j
− ŵ)), so the expected payoff is16:

E[Kt | K1, . . . ,Kt−1] =
b̂
ŵ

max
(

0,
w j

b j
−max

(
0, b̂

w j

b j
− ŵ

))
≤

by Lemma 5.4
1 .

16When the level is d and b j = w j, we in fact we have Kt = 1 always; but we do not need this stronger fact.
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If the level is 1, then let J ⊆ [16ℓ] give the set of probed subtree positions, and H give the set of revealed
subtree positions; since there are ≤ ℓ queries, |J|, |H| are both ≤ ℓ, and the probability of a query in an
unexplored region to hit is ≤ b1

16ℓ−|J∪H| ≤
b1
14ℓ . The charging scheme does not apply, so

E[Kt | K1, . . . ,Kt−1]≤
b1

14ℓ
·

d

∏
j=2

b j .

Thus in all cases, E[Kt | K1, . . . ,Kt−1]≤max(1, ∏
d
j=1 b j/14ℓ).

The total charge deposited on mid-level nodes is ≤ ℓ. The algorithm is guaranteed to succeed if the total
number of leaves killed is less than the total number of leaves; i.e, if ∑i∈[ℓ] Kt + ℓ ≤∏

d
j=1 b j. Note that by

Lemma 5.2 and the definition of b1, ∏
d
j=1 b j ≥ b1ℓ/α ≥ 8ℓ. Consequently,

ℓ+7E

[
ℓ

∑
t=1

Kt

]
≤ 8max

(
ℓ,

1
14

d

∏
j=1

b j

)
≤ 8max

(
1
8
,

1
14

) d

∏
j=1

b j ≤
d

∏
j=1

b j .

Now let Dt = Kt/∏
d
j=2 b j, so that each Dt ∈ [0,1]. Writing events in terms of Dt lets us use Lemma 3.1 to

bound the probability that too many leaves are killed:

Pr

[
ℓ+ ∑

t∈[ℓ]
Kt ≥

d

∏
i=1

bi

]
≤ Pr

[
∑

t∈[ℓ]
Kt ≥ 7max

(
ℓ,

1
14

d

∏
j=1

b j

)]

≤ Pr

[
∑

t∈[ℓ]
Dt ≥ 7max

(
ℓ/

d

∏
j=2

b j,
b1

14

)]

≤ exp

(
− 62

2+6
max

(
ℓ/

d

∏
j=2

b j,
b1

14

))

≤ exp
(
−9b1

28

)
≤ 2b1· 9

28ln2 ≤ 2⌈3log1/δ⌉ 9
28ln2 ≤ δ .

In the preceding proof, we used the following:

Lemma 5.4. Let b̂, ŵ,b,w be positive, and b̂≥ 1. Then:

b̂
ŵ

(
max

(
0,

w
b
−max

(
b̂

w
b
− ŵ, 0

)))
≤ 1 .

Proof of Lemma 5.4. If b̂
ŵ ≤

b
w , then:

b̂
ŵ

(
max(0,

w
b
−max(b̂

w
b
− ŵ,0))

)
≤ b̂

ŵ
w
b
≤ 1 .

Otherwise, b̂
ŵ ≥

b
w , and:

b̂
ŵ

(
max

(
0,

w
b
−max

(
b̂

w
b
− ŵ, 0

)))
≤ b̂

ŵ

(w
b
−
(

b̂
w
b
− ŵ

))
=

b̂
ŵ

(
w
b
− b̂
(

w
b
− ŵ

b̂

))
≤ b̂

ŵ

(
w
b
−1
(

w
b
− ŵ

b̂

))
=

b̂
ŵ

ŵ
b̂
= 1 , since b̂≥ 1 and

w
b
− ŵ

b̂
≥ 0 .
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The proof of the following lemma is a mostly straightforward calculation, which we defer to Ap-
pendix A.3.

Lemma 5.5. Listing 3 uses

O

(⌈
(4ℓ)2/(d−1)

(n/4)2/(d(d−1))

⌉
(logℓ)2 +min(ℓ, log1/δ ) logℓ

)
(18)

bits of space, where d = min
(
⌈logℓ⌉,

⌊
2 log(n/4)

log(16ℓ)

⌋)
. A weaker upper bound on this is:

O
(
ℓ

logℓ
logn (logℓ)2 +min(ℓ, log1/δ ) logℓ

)
.

If ℓ≥ 4 and ℓ≤ n/64, then Lemma 5.5 and Lemma 5.3 together show that Listing 3 has error ≤ δ and
space usage as bounded by eq. (18). To handle the cases where ℓ < 4 and ℓ > n/64, one can instead use the
simple deterministic algorithm for MIF(n, ℓ) from [Sto23], using only ℓ bits of space. As this is in fact less
than the space upper bound from eq. (18), it follows that eq. (18) gives an upper bound on the space needed
for a random tape, adversarially robust MIF(n, ℓ) algorithm for any setting of parameters. Formally:

Theorem 5.6. There is a family of adversarially robust random tape algorithms, where for MIF(n, ℓ) the
corresponding algorithm has ≤ δ error and uses

O

(⌈
(4ℓ)

2
d−1

(n/4)
2

d(d−1)

⌉
(logℓ)2 +min(ℓ, log 1

δ
) logℓ

)

bits of space, where d = max
(

2,min
(
⌈logℓ⌉,

⌊
2 log(n/4)

log(16ℓ)

⌋))
. When δ = 1/poly(n) a (weakened) space

bound is O
(
ℓlogn ℓ(logℓ)2 + logℓ logn

)
.

Remark. Listing 3 does not use the most optimal assignment of the parameters bd , . . . ,b2; constant-factor
improvements in space usage are possible if one sets bd , . . . ,b2 to be roughly in an increasing arithmetic
sequence, but this would make the analysis more painful.

Remark. In exchange for a constant factor space increase, one can adapt Listing 3 to produce an increasing
sequence of output values. Similar adjustments can be performed for other MIF algorithms.

6 The Pseudo-Deterministic and Random Seed Lower Bounds

In this section, we prove a space lower bound for pseudo-deterministic streaming algorithms; in particular,
for the most general (random oracle) type of them. See Section 2.4 for a high-level plan of the proof.

Let A be a random-oracle pseudo-deterministic algorithm for MIF(n, ℓ) using z bits of state, which has
worst case failure probability δ ≤ 1

3 . Let Π : [n]⋆→ [n] be the function giving the canonical output ofA after
processing a stream (as was defined in Section 1.1), and let S = Π([n]ℓ) be the set of all canonical outputs
at time ℓ (for this proof we can ignore outputs at times < ℓ). Clearly |S| ≤ n, and we will also prove (see
Lemma 6.8) that |S| ≤ 2z+1. It is easy to see that |S| ≥ ℓ+ 1 and that, since MIF(n, ℓ) is nontrivial, correct
algorithms must have z≥ 1.

The main proof in this section only applies to algorithms with very low error (potentially as small as
1/nΩ(logn)). To ensure that we are working with an algorithm with error this small, we will first apply
Lemma 3.3, using p independent instances of A, where p ≥ 1 is an integer chosen later. This will produce
an ε-error algorithm B that uses zp bits of space, where ε ≤ (2δ )p/30. Moreover, the canonical outputs of B
will still be given by Π.
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We may view B as a distribution over deterministic streaming algorithms; each such algorithm, obtained
by fixing B’s oracle random string, produces outputs according to a function of the form A : [n]⋆→ [n]. Since
B is pseudo-deterministic, we have the following property:

∀x ∈ [n]≤ℓ : Pr
A∼B

[A(x) ̸= Π(x)]≤ ε . (19)

It is time to give the details of the key procedure FINDCOMMONOUTPUTS (abbreviated as FCO), out-
lined earlier in Section 2.4, that underpins our proof. The input stream positions, from 1 to ℓ, are split into
d = Θ(ℓ/(zp)) consecutive intervals, of lengths td , td−1, . . . , t1, in order, where td = td−1 = · · ·= t2 = Θ(zp)
and t1 = ℓ−∑

d
k=2 tk; the constants are chosen such that t1 ≥ ℓ/2. A call to FCO takes the form FCO(B,C,x,k),

where B : [n]ℓ → [n] is an output function, C is a random collection (matrix) of thresholds, k ∈ [d], and
x ∈ [n]td+···+tk+1 is a stream prefix. (Notice that when k = d, we must have x =ϵ.) By design FCO is recursive,
bottoming out at k = 1, and always returns a subset of S of cardinality wk, where

wk := 2k−1(t1 +1) . (20)

The precise logic of FCO is given in Listing 4. Throughout this section, we use SEQS(Z, t) to denote the set
of all length-t sorted sequences of distinct elements of Z. Note that

|SEQS(Z, t)|=
(
|Z|
t

)
.

A key property of FCO is that for all x ∈ [n]td+···+tk+1 , if C is chosen uniformly at random from [1,2)d×N,
and A∼B, then w.h.p. FCO(A,C,x,k) produces the same set as FCO(Π,C,x,k). Another important property
is that FCO(Π,C,x,k) always produces wk distinct elements in S without a failure (i.e., returns using Line 22,
not Line 23). These properties are formally proved in Lemma 6.2, to follow. In particular, FCO(Π,C, ϵ,d)
produces wd distinct elements in S, showing that |S| ≥ wd . Since wd is a function of z, combining this with
upper bounds on |S| lets us solve for a lower bound on z.

We elaborate on how we achieve the two key properties of FCO. First, to ensure FCO(Π,C,x,k) equals
FCO(A,C,x,k) for random A∼ B and C ∈R [1,2)d×N, we use a standard random threshold trick when com-
puting the set Ph on Line 19. The recursive calls to FCO(A,C,x ◦ y,k− 1) on Line 19 do not always match
the outputs of FCO(Π,C,x ◦ y,k−1); as a result, the element frequency vector f (h) from Line 17 may have
random noise when computed using A instead of using Π. If Line 19 used a fixed threshold value, then
there would exist pseudo-deterministic MIF algorithms yielding element frequencies close to this threshold,
where even low-magnitude noise could affect which elements are included in Ph. Using C to choose random
threshold values that are independent of the choice of A ensures that most of the time, the noise has no
influence on Ph; ultimately, ensuring that FCO(Π,C,x,k) and FCO(A,C,x,k) most likely produce the same
output. More detail is given in the proof of Lemma 6.6.

Second, the design of Listing 4 ensures that FCO(Π,C, ϵ,d) actually produces a set of wd possible out-
puts. Recall the AVOID(m,a,b) communication problem described in Section 2.2. The output sets Ty of size
wd−1 computed on Line 12, for each y∈ SEQS(S, td), will have a similar structure to the input and output sets
for an AVOID protocol, in that the set Ty is typically disjoint from y, and in that the distribution of possible
Ty values is limited (through the requirement that Π agrees with a mixture of functions corresponding to
deterministic streaming algorithms). Note that we cannot just extract the “most common values” that occur
in the sets Ty for y ∈ SEQS(S, td), because if tdwd−1≪ |S|, it is possible that these are very concentrated; for
example there could exist a set V of size wd−1 so that if y∩V =∅, then Ty =V , in which case an algorithm
satisfying the first property can only reliably identify wd−1 outputs. Instead, we iteratively build up a set of
common outputs, using the following observation. If the current set of common algorithm outputs Qh−1 is
smaller than wd , then the set Ph containing the most common elements of Ty for y ∈ SEQS(Qh−1, td) can not
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Listing 4 The procedure to compute a set for Lemma 6.2
Let t1, . . . , td , w1, . . . ,wd be integer parameters, and S the set of valid outputs

FINDCOMMONOUTPUTS(B, C, x, k) ▷ abbreviated as FCO(B,C,x,k)
1: ▷ Inputs: function B : [n]ℓ→ [n], matrix C ∈ [1,2)d×N, stream prefix x ∈ [n]tk+···+t1 ◁
2: ▷ Output: a subset of S of size wk ◁
3: if k = 1 then
4: e0← B(x◦ ⟨1,1, . . . ,1⟩)
5: for i in 1, . . . , t1 do
6: ei← B(x◦ ⟨e0, . . . ,ei−1,1, . . . ,1⟩)
7: if e0, . . . ,et1 are all distinct then
8: return {e0,e1, . . . ,et1} ▷ identify w1 distinct possible outputs
9: return arbitrary subset of S of size w1 (failure)

10: else
11: for each y ∈ SEQS([n], tk) do
12: Ty← FINDCOMMONOUTPUTS(B,C,x◦ y,k−1) ▷ note |Ty|= wk−1
13: Q0← T⟨1,2,...,tk⟩
14: for h in 1,2,3,4 do
15: ▷ gather statistics and find common elements among the sets Ty ◁
16: for each j ∈ S do
17: f (h)j ← |{y ∈ SEQS(Qh−1, tk) : j ∈ Ty}| ▷ count frequencies
18: θ ←Ck,hwk−1/(16|S|) ▷ set random threshold

19: Ph←
{

j ∈ S : f (h)j ≥ θ
(|Qh−1|

tk

)}
▷ identify “sufficiently common” elements

20: Qh← Qh−1∪Ph
21: if |Qh| ≥ wk then
22: return the wk smallest elements in Qh
23: return arbitrary subset of S of size wk (failure)

be entirely contained by Qh−1: if we did have Ph ⊆ Qh−1, then one can show it is possible to construct an
impossibly efficient protocol for AVOID(|Qh−1|, td ,wd−1). Consequently, until for some value of h we have
|Qh| ≥ wd , it is possible to find a slightly larger Qh+1. More detail is given in the proof of Lemma 6.4.

Before beginning the formal proof, let us set the various parameters precisely. Concretely, we set

p =

⌈
max

(√
10ℓ log(64|S|)

3z log 1
2δ

,
30log(64|S|)

log 1
2δ

)⌉
. (21)

d = 1+
⌊

ℓ

18zp

⌋
, (22)

td = td−1 = · · ·= t2 = ⌈4ln2(zp+2)⌉ . (23)

Recall also that

ε ≤ (2δ )p/30 . (24)

We further define

εk := wk(64|S|)k−1
ε , (25)
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which will upper-bound the probability that FCO(A,C,x,k) ̸= FCO(Π,C,x,k). We record some useful esti-
mations in the next lemma.

Lemma 6.1. With the above choices, td = · · ·= t2 ≤ 9zp, t1 ≥ ℓ/2, and ε ≤ 1/(64|S|)d .

Proof. The claim about the tis holds since z≥ 1 and p≥ 1. Using this in eq. (22) gives t1 ≥ ℓ−(d−1)9zp≥
ℓ/2. We turn to proving the claim about ε . Recall that, by design, ε ≤ (2δ )p/30.

The two branches of the maximum in eq. (21) ensure that:

p2 ≥ 10ℓ log(64|S|)
3z log 1

2δ

and p≥ 30log(64|S|)
log 1

2δ

. (26)

Because d ≤max(1, ℓ
9zp), it suffices to prove that ε ≤ 1/(64|S|) and that ε ≤ 1/(64|S|)ℓ/(9zp). Now,

log
1
ε

≥
Lemma 3.3

p
30

log
1

2δ
≥

eq. (26)

1
30p

10ℓ log(64|S|)
3z

=
ℓ

9zp
log(64|S|) ;

log
1
ε

≥
Lemma 3.3

p
30

log
1

2δ
≥

eq. (26)
log(64|S|) .

6.1 Common Outputs Behave Canonically

We now come to the central lemma in the proof, which asserts that the set of common outputs is likely the
same for the canonical function Π as it is for a random draw A∼ B. It also asserts two other key properties
of FCO. The lemma can be thought of as a “proof of correctness” of FCO.

Lemma 6.2. Let k ∈ [d] and x ∈ [n]td+···+tk+1 . Then FCO satisfies the following properties.

1. PrA∼B,C∈R[1,2)d×N [FCO(A,C,x,k) = FCO(Π,C,x,k)]≥ 1− εk.

2. For all C ∈ [1,2)d , the set FCO(Π,C,x,k) is disjoint from x and a subset of S.

3. For all A : [n]ℓ→ [n] and C ∈ [1,2)d , FCO(A,C,x,k) outputs a set of size wk.

Proof. The proof is by induction on k, spread over the next few lemmas. The case k = 1 is handled in
Lemma 6.3. For the induction step, the heart of the argument, which invokes a communication lower bound
for AVOID, is given in Lemma 6.4. Following this, Lemma 6.5 establishes the latter two claims in the lemma
and Lemma 6.6 establishes the first claim.

Lemma 6.3. Lemma 6.2 holds for k = 1.

Proof. Let e0, . . . ,et1 be the values of the variables on Lines 4 to 6 of Listing 4 when FCO(Π,C,x,1) is
called; note that these do not depend on C. For i ∈ {0, . . . , t1}, define sequences si = ⟨e0, . . . ,ei−1,1, . . . ,1⟩,
so that s0 = ⟨1,1, . . . ,1⟩, and st1 = ⟨e0, . . . ,et1−1⟩. If, for all i ∈ {0, . . . , t1}, we have A(x◦ si) = Π(x◦ si), the
value of FCO(A,C,x,1) will exactly match FCO(Π,C,x,1). By a union bound,

Pr
A∼B,C

[FCO(A,C,x,k) ̸= FCO(Π,C,x,k)]≤
t1

∑
i=0

Pr
A∼B

[A(x◦ si) ̸= Π(x◦ si)] ≤
eq. (19)

(t1 +1)ε = ε1 .

Because Π is the canonical output function for a protocol for MIF, for any z ∈ [n]ℓ, we have Π(z) /∈ z.
Consequently, each ei = Π(x ◦ ⟨e0, . . . ,ei−1,1, . . . ,1⟩) is neither contained in x nor by {e0, . . . ,ei−1}; thus
{e0, . . . ,et1} has size t1 +1 = w1 and is disjoint from x.
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Lemma 6.4. Let x ∈ [n]td+···+tk+1 . When computing FCO(Π,C,x,k), in the hth loop iteration, if |Qh−1|< wk,
then |Ph \Qh−1| ≥

⌈1
4 wk−1

⌉
. Consequently, the algorithm will return using Line 22, not Line 23.

Proof. Assume for sake of contradiction that |Qh−1|< wk and |Ph \Qh−1| ≤
⌊1

4 wk−1
⌋
. Then we can use the

algorithm A to implement a protocol for the one-way communication problem AVOID(|Qh−1|, tk,
⌈1

2 wk−1
⌉
),

with ≤ 1
2 probability of error.

We assume without loss of generality that Qh−1 = [|Qh−1|]; if not, relabel coordinates so that this holds.
In the protocol, after Alice is given a subset W ⊆ Qh−1 with |W | = tk, they construct a sequence v = x ◦
SORT(W ) in [n]td+···+tk . Then Alice uses public randomness to instantiate an instance E of A; inputs the
sequence v to E; and sends the new state of E to Bob, using a zp-bit message. As Bob shares the public
randomness, they can use this state to evaluate the output of the algorithm on any continuation of the stream.
In particular, Bob can evaluate the algorithm for any possible suffix, to produce a function Ãx◦SORT(W ) :
[n]tk−1+···+t1 → [n]; Bob then samples a random C ∈ [1,2)d×N, and computes V = FCO(Ãx◦SORT(W ),C,k−1),
which is a subset of S. If |V ∩Qh−1| ≥

⌈1
2 wk−1

⌉
, Bob outputs the smallest

⌈1
2 wk−1

⌉
entries of V ∩Qh−1.

Otherwise, Bob outputs an arbitrary set of size
⌈1

2 wk−1
⌉
.

First, we observe that for any value of SORT(W ), the distribution of Ãx◦SORT(W ) is exactly the same as
the distribution of Ax◦SORT(W ), when A is drawn from B; this follows because for a fixed setting of the oracle
random string of the algorithm, it behaves deterministically.

Applying Lemma 6.2 at k−1, we observe that for any W ∈
(Qh−1

tk

)
,

Pr[FCO(Ãx◦SORT(W ),C,k−1) = FCO(Π,C,x◦ SORT(W ),k−1)]≥ 1− εk−1 ≥
3
4
.

Furthermore, we are guaranteed that FCO(Π,C,x◦ SORT(W ),k−1) has size wk−1 and is disjoint from W .
We now bound the probability, over a uniformly random y ∈ SEQS(Qh−1, tk), that |FCO(Π,C,x ◦ y,k−

1)∩Qh−1| <
⌈1

2 wk−1
⌉
. Define Ty = FCO(Π,C,x ◦ y,k− 1) and, for each j ∈ S, f (h)j , as in Listing 4. In

particular, we have:

Pr
y,C

[
|Ty∩Qh−1|<

⌈
1
2

wk−1

⌉]
= Pr

y,C

[
|Ty \Qh−1|>

⌊
1
2

wk−1

⌋]
≤ Pr

y,C

[
|Ty \Ph \Qh−1|>

⌊
1
2

wk−1

⌋
−
⌊

1
4

wk−1

⌋]
(27)

≤ Pr
y,C

[
|Ty \Ph| ≥

1
4

wk−1

]
.

(The inequality on eq. (27) follows since we assumed |Ph \Qh−1| ≤
⌊1

4 wk−1
⌋
.) Note that:

∑
j/∈Ph

f (h)j = ∑
y∈SEQS(Qh−1,tk)

|Ty \Ph| ≥
1
4

wk−1

∣∣∣∣{y ∈ SEQS(Qh−1, tk) : |Ty \Ph| ≥
1
4

wk−1

}∣∣∣∣ . (28)
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Using the fact that y is uniformly distributed over SEQS(Qh−1, tk), gives:

Pr
y,C

[
|Ty \Ph| ≥

1
4

wk−1

]
= EC

∣∣{y ∈ SEQS(Qh−1, tk) : |Ty \Ph| ≥ 1
4 wk−1

}∣∣(|Qh−1|
tk

)
≤ EC

∑ j/∈Ph
f (h)j

1
4 wk−1

(|Qh−1|
tk

) by eq. (28)

≤ EC
(|S|− |Ph|)

Ck,hwk−1
16|S|

(|Qh−1|
tk

)
1
4 wk−1

(|Qh−1|
tk

) by definition of Ph

= EC
Ck,h

4
|S|− |Ph|
|S|

≤ 1
2
. since |Ph| ≥ 0, Ck,h ≤ 2

Thus the probability that |Ty∩Qh−1| <
⌈1

2 wk−1
⌉

holds is ≤ 1/2. Since Bob only gives an incorrect output
when this happens or when FCO(Ãx◦SORT(W ),C,k−1) ̸= FCO(Π,C,x◦ SORT(W ),k−1), it follows by a union
bound that the total failure probability is ≤ 1

2 +
1
4 ≤

3
4 .

Consequently, the protocol implementation has ≤ 3
4 error when inputs are drawn from the uniform

distribution over
(Qh−1

tk

)
; by Theorem 3.4, we obtain a lower bound on the required message length, giving

zp >
tk
⌈1

2 wk−1
⌉

|Qh−1| ln2
+ log(1−3/4)≥ tkwk−1

|Qh−1| ·2ln2
−2 .

Rearranging this slightly and using integrality of |Qh−1| gives:

|Qh−1| ≥
⌈

tkwk−1

2ln2(zp+2)

⌉
=

⌈
⌈4ln2(zp+2)⌉
2ln2(zp+2)

wk−1

⌉
≥ 2wk−1 = wk ,

but as |Qh−1| < wk, this implies wk < wk, which is a contradiction; this proves that the assumption |Ph \
Qh−1| ≤ 1

4 wk−1 must have been invalid.
Finally, we observe that since, in each iteration of the loop on Lines 14 to 22, |Qh| = |Qh−1 ∪Ph| =

|Qh−1|+ |Ph \Qh−1| ≥ |Qh−1|+
⌈1

4 wk−1
⌉
, and we initially have |Q0| = wk−1, the size of Qh (assuming

we haven’t returned yet) must be ≥ wk−1(1+ h/4). By the last loop iteration (with h = 4), we will have
|Qh| ≥ 2wk−1 = wk.

Lemma 6.5. For k > 1, x ∈ [n]td+···+tk+1 , FCO(Π,C,x,k) is disjoint from x and a subset of S; and for all
A,C,k, FCO(A,C,x,k) outputs a set of size wk.

Proof. By Lemma 6.2 at k−1, the sets TA,x◦y chosen on Line 12 are always subsets of S and disjoint from
x◦ y, and hence disjoint from x. Per Lemma 6.4, FINDCOMMONOUTPUTS will return a subset of Qh using
Line 22, where h is the last loop iteration number. Each element of Qh was either in TA,x◦⟨1,2,...,tk⟩ (and hence

also in S) or was in Ph′ for some h′ ≤ h. Note that Ph′ only contains integers j for which f (h
′)

j > 0; i.e.,
which were contained in one of the sets (TA,x◦y)y∈SEQS(Qh′−1,tk), and are thereby also in S. Consequently, the
set returned is contained in S, which implies |S| ≥ wk.

Calls to FCO(A,C,x,k) will either output through Line 22 (where the size of the set has been checked by
the pseudocode) or through Line 23 (where a subset of size wk must exist, because we know |S| ≥ wk).

Lemma 6.6. For k > 1, and all x ∈ [n]td+···+tk+1 ,

Pr
A∼D,C

[FCO(A,C,x,k) ̸= FCO(Π,C,x,k)]≤ εk .
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Proof. The proof of the lemma follows from the observation that, when computing FCO(A,C,x,k), even if
a fraction of the recursive calls to FCO(A,C,x ◦ y,k− 1) produced incorrect outputs, the values for Q0 and
(Ph)h≥1 will likely match those computed when FCO(Π,C,x,k) is called.

Henceforth, we indicate variables from the computation of FCO(Π,C,x,k) without a tilde, and variables
from the computation of FCO(A,C,x,k) with a tilde. For example, f (h)j is computed using B = Π, while f̃ (h)j
is computed using B = A. We also define

f̂ (h)j = |{y ∈ SEQS(Qh−1, tk) : j ∈ TA,y}|

P̂h =

{
j ∈ S : f̂ (h)j ≥

Ck,hwk−1

16|S|

∣∣∣∣(Qh−1

tk

)∣∣∣∣} ;

that is, f̂ (h)j and P̂h are the values that would be computed by FCO(A,C,x,k) if the set Qh−1 was used instead
of the set Q̃h−1.

Say FCO(Π,C,x,k) returns from the loop at iteration h⋆. The output of FCO(A,C,x,k) will equal
FCO(Π,C,x,k) if Q0 = Q̃0 and for all h ∈ [h⋆], we have Ph = P̂h. (If this occurs, then as Q0 = Q̃0, P̂1 = P̃1, so
Q1 = Q0∪P1 = Q̃0∪ P̃1 = Q̃1, and as Q1 = Q̃1, P̂2 = P̃2, and so on.) By Lemma 6.2 at k−1, the probability
that Q0 ̸= Q̃0 is ≤ εk−1. Consider a specific h ∈ [h⋆]; the only way in which P̂h ̸= Ph is if there is some j ∈ S
for which f (h)j and f̂ (h)j are on opposite sides of the threshold Ck,hwk−1

16|S| |
(Qh−1

tk

)
|.

Let λh be the random variable indicating the fraction of y ∈ SEQS(Qh−1, tk) for which TA,x◦y ̸= TΠ,x◦y.
Note that the values TA,x◦y are functions of the random variable A and of Ck′,h for k′ < k,h ∈ N; in particular
TA,x◦y is independent of (Ck,h)h∈N. By Lemma 6.2 at k−1, Pr[TA,x◦y ̸= TΠ,x◦y]≤ εk−1, which implies Eλh ≤
εk−1.

Fix a particular setting of A and (Ck′,h)k′<k,h∈N. Since each set TA,x◦y contributes 1 unit to each of wk−1

variables f̂ (h)j :

∑
j∈S

∣∣∣ f (h)j − f̂ (h)j

∣∣∣≤ wk−1 |{y ∈ SEQS(Qh−1, tk) : TA,x◦y ̸= TΠ,x◦y}|= wk−1λh

(
Qh−1

tk

)
.

Let F be the set of possible values in [1,2) for Ck,h for which Ph ̸= P̂h; this is a union of intervals correspond-

ing to each pair
(

f (h)j , f̂ (h)j

)
, for j ∈ S. A given value c is bad for j if

f (h)j <
cwk−1

16|S|

(
|Qh−1|

tk

)
≤ f̂ (h)j ; equivalently: c ∈

(
16|S| f (h)j

wk−1
(|Qh−1|

tk

) , 16|S| f̂ (h)j

wk−1
(|Qh−1|

tk

)] ,
and similarly in the case where f̂ (h)j < f (h)j . The measure of F is:

≤∑
j∈S

16|S|
wk−1

(|Qh−1|
tk

) | f̂ (h)j − f (h)j | ≤
16|S|
wk−1

wk−1λh = 16|S|λh .

This upper bounds the probability that Ck,h ∈ F and Ph ̸= P̂h. We then have:

Pr[Ph ̸= P̂h] = EA,(Ck′,h)k′<k
Pr[Ck,h ∈ F ]≤ EA,(Ck′,h)k′<k

(16|S|λh) = 16|S|εk−1 .

By a union bound, the probability that Q0 ̸= Q̃0 or Ph ̸= P̂h for any h≤ h⋆ is

≤ εk−1 +h⋆16|S|εk−1 ≤ (1+4 ·16|S|)εk−1 ≤
64|S|wk

wk−1
εk−1 .

Thus Pr[FCO(A,C,x,k) ̸= FCO(Π,C,x,k)]≤ 64|S|wk
wk−1

εk−1 = εk.

We have thus completed the proof of Lemma 6.2, establishing the key properties of FCO. It is time to
use them to derive our lower bound.
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6.2 Obtaining a Pseudo-Deterministic Lower Bound

Lemma 6.7. We have:

z≥ ℓ

log 2|S|
ℓ

min

(
1
36

,
log 1

2δ

17280log(64|S|) log 2|S|
ℓ

)
.

Proof. A consequence of Lemma 6.2 is that FCO(Π,C,d) will output a set of size wd which is a subset of S.
This shows that |S| ≥ wd . Now, from the definition of wd , it follows that

|S| ≥ wd = 2d−1(t1 +1)> 2d−1t1 ≥ 2d−1 ℓ

2
=⇒ log

2|S|
ℓ
≥ d−1 =

⌊
ℓ

18zp

⌋
.

Since |S| ≥ ℓ+1, the left hand side log 2|S|
ℓ > 1, so using the inequality x/2≤max(⌊x⌋,1) gives:

ℓ

36zp
≤ log

2|S|
ℓ

=⇒ z≥ ℓ

36log 2|S|
ℓ

· 1
p
.

Next, we expand the definition of p (see eq. (21)), eliminating the ceiling using the inequality ⌈x⌉ ≤
max(1,2x):

z≥ ℓ

36log 2|S|
ℓ

min

1,
1
2

√
3z log 1

2δ

10ℓ log(64|S|)
,
1
2
·

log 1
2δ

30log(64|S|)

 .

We have two cases: if the left or right side of the minimum is smallest, then:

z≥min

(
ℓ

36log 2|S|
ℓ

,
ℓ log 1

2δ

2160log 2|S|
ℓ log(64|S|)

)
, (29)

while otherwise, if the center is smallest, we get:

z2 ≥ 1
4

ℓ2

(36log 2|S|
ℓ )2
·

3z log 1
2δ

10ℓ log(64|S|)
=⇒ z≥

ℓ log 1
2δ

17280(log 2|S|
ℓ )2 log(64|S|)

.

As log 2|S|
ℓ ≥ 1, this is smaller than the right minimum branch of eq. (29), so the common lower bound for

all cases is:

z≥min

(
ℓ

36log 2|S|
ℓ

,
ℓ log 1

2δ

17280(log 2|S|
ℓ )2 log(64|S|)

)
.

Lemma 6.8. We have |S|< 2z+1.

Proof. For each a ∈ S, let xa ∈ Π−1(a). One can use A to provide a randomized ≤ δ -error, z-bit encoding
of the elements in S. Using public randomness, encoder and decoder choose the oracle random string forA.
Each a ∈ S is encoded by sending xa to A and outputting the algorithm state σ . To decode, given a state σ ,
one evaluates the output of A at state σ . Using the minimax principle, one can prove that the randomized
encoding requires ≥ log((1− δ )|S|) bits of space, which implies 2z ≥ (1− δ )|S|. Since δ ≤ 1

3 , it follows
s≤ 3

2 2z < 2z+1.

We now establish the main result.
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Theorem 6.9. Pseudo-deterministic δ -error random oracle algorithms for MIF(n, ℓ) require

Ω

(
min

(
ℓ

log 2n
ℓ

+
√
ℓ,

ℓ log 1
2δ

(log 2n
ℓ )

2 logn
+

(
ℓ log

1
2δ

)1/4
))

bits of space when δ ≤ 1
3 . In particular, when δ = 1/poly(n) and ℓ= Ω(logn), this is:

Ω

(
ℓ

(log 2n
ℓ )

2
+(ℓ logn)1/4

)
.

Proof sketch. Using Lemma 6.8 and the fact that S⊆ [n], we obtain |S| ≤min(n,2z+1). The theorem follows
by combining this bound with the inequality of Lemma 6.7, and for each of four cases corresponding to
different branches of min and max, solving to find a lower bound on z. The full proof with calculations is
given in Appendix A.4.

Remark. For δ ≤ 2−ℓ, Theorem 6.9 reproduces the deterministic algorithm space lower bound for MIF(n, ℓ)
from [Sto23] within a constant factor.

6.3 Implications for Adversarially Robust Random Seed Algorithms

The following result, paraphrased from [Sto23] relates the random seed adversarially robust space complex-
ity with the pseudo-deterministic space complexity.

Theorem 6.10 ([Sto23]). Let SPD
1/3(n, ℓ) give a space lower bound for a pseudo-deterministic algorithm for

MIF(n, ℓ) with error ≤ 1/3. Then an adversarially robust random seed algorithm with error δ ≤ 1
6 , if it uses

z bits of space, must have z≥ SPD
1/3(n,

⌊
ℓ

2z+2

⌋
).

Theorem 6.11. Adversarially robust random seed algorithms for MIF(n, ℓ) with error ≤ 1
6 require space:

Ω

(
ℓ2

n
+
√

ℓ/(logn)3 + ℓ1/5
)
.

This follows by combining Theorem 6.10, Theorem 6.9, Theorem 3.5, and performing some algebra; a
proof is given in Appendix A.4.
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A Appendix

A.1 Proofs of Useful Lemmas

Here we provide proofs of the results in Section 3.1 for which we haven’t found an external source.

Proof of Lemma 3.1. The proof is modeled off that in [Sto23], which only addresses one direction. It is a
straightforward blend of standard proofs of the Chernoff bound and of Azuma’s inequality.

First, the ≥ direction. Choose, with foresight, z = ln(1+α).

Pr

[
t

∑
i=1

Xi ≥ (1+α)
t

∑
i=1

pi

]

= Pr

[
exp(z

t

∑
i=1

Xi)≥ exp(z(1+α)
t

∑
i=1

pi)

]

≤ Eexp(z∑
t
i=1 Xi)

exp(z(1+α)∑
t
i=1 pi)

≤ E[ezX1E[ezX2 . . .E[ezXt |X1, . . . ,Xt−1] . . . |X1]]

exp(z(1+α)∑
t
i=1 pi)

.
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The innermost term E[ezXt |X1, . . . ,Xt−1] is, by convexity of ez, ≤ ptez +(1− pt) ≤ ept(ez−1); after applying
this upper bound, we can factor it out and bound the Xt−1 term, and so on. Thus we continue the chain of
inequalities to get:

≤ exp((ez−1)∑
t
i=1 pi)

exp(z(1+α)∑
t
i=1 pi)

= exp

(
−((1+α) ln(1+α)−α)

t

∑
i=1

pi

)
.

For the other direction, set z = ln(1−α), which is < 0. This time, E[ezXt |X1, . . . ,Xt−1]≤ ptez +(1− pt)
because pt is a lower bound for E[Xt |X1, . . . ,Xt−1], and z is negative. That ptez +(1− pt) ≤ ept(ez−1) still
holds for negative z, so:

Pr

[
t

∑
i=1

Xi ≤ (1−α)
t

∑
i=1

pi

]
= Pr

[
exp(z

t

∑
i=1

Xi)≥ exp(z(1−α)
t

∑
i=1

pi)

]

≤ . . .≤ exp((ez−1)∑
t
i=1 pi)

exp(z(1−α)∑
t
i=1 pi)

= exp

(
−((1−α) ln(1−α)+α)

t

∑
i=1

pi

)
.

Proof of Lemma 3.3. For each i ∈ [p], let Yi be the random indicator variable for the event that Xi ̸= v. Let
α = 1

2δ
−1.The probability that v is not the most common element can be bounded by the probability that it

is the not the majority element; by a Chernoff bound, this is:

Pr[ ∑
i∈[p]

Yi ≥
1
2

p] = Pr[ ∑
i∈[p]

Yi ≥ (1+α)δ p]≤ exp(−((1+α) ln(1+α)−α)δ p)

≤ exp(−0.073((1+α) ln(1+α))δ p) since α ≥ 1/6

≤ exp
(
−0.073

2δ
ln

1
2δ

δ p
)
= (2δ )0.036p .

A.2 Mechanical Proofs for Section 4

Proof of Lemma 4.7. Let x be the left hand side of Eq. 14. The left branch of the min(·, ·) terms in Eq. 14 is
actually unnecessary. For any integer λ ≥ 2, say that(

ℓλ+1

n

) 2
λ2+3λ−2

= max
k∈N

(
ℓk+1

n

) 2
k2+3k−2

.

Then in particular, (
ℓλ+1

n

) 2
λ2+3λ−2

≥

(
ℓ(λ−1)+1

n

) 2
(λ−1)2+3(λ−1)−2

≥

(
ℓλ

n

) 2
λ2+λ−4

,

which implies

n2λ+2 = n(λ
2+3λ−2)−(λ 2+λ−4) ≥ ℓλ ·(λ 2+3λ−2)−(λ+1)·(λ 2+λ−4) = ℓλ 2+λ+4 ,

hence we have ℓ≤ n
2λ+2

λ2+λ+4 .
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On the other hand, we have

ℓ1/λ ≥

(
ℓλ+1

n

) 2
λ2+3λ−2

⇐⇒ nλ ≤ ℓ(λ+1)λ− λ2+3λ−2
2 = ℓ

λ2−λ+2
2 ,

so the left branch of the min(·, ·) in Eq. 14 is only smaller when ℓ≥ n
2λ

λ2−λ+2 . As

2λ +2
λ 2 +λ +4

≤ 2λ

λ 2−λ +2
,

for all λ ≥ 1, it follows that the left branch of the min(·, ·) in Eq. 14 is only smaller than the right when the
entire term is not the maximum. Thus

x≥max
k∈N

(
ℓk+1

n

) 2
k2+3k−2

.

To get a looser but more easily comprehensible lower bound, we note that maxk∈N log
(
ℓk+1

n

) 2
k2+3k−2 is

piecewise linear and convex in logℓ. Consequently, we can lower bound it using the convex function C (logℓ)2

logn ,

where C is the maximum value which satisfies the inequality at all “corner points” of maxk∈N log
(
ℓk+1

n

) 2
k2+3k−2 .

These corner points occur precisely at values of logℓ where, for some k ≥ 2, we have:(
ℓk+1

n

) 2
k2+3k−2

=

(
ℓ(k−1)+1

n

) 2
(k−1)2+3(k−1)−2

.

Rearranging this gives:

logn
logℓ

=
(k+1)((k−1)2 +3(k−1)−2)− (k−1+1)(k2 +3k−2)

((k−1)2 +3(k−1)−2)− (k2 +3k−2)
=

k2 + k+4
2k+2

.

so the corners occur at ℓ= n
2k+2

k2+k+4 ; and at such ℓ, we have

log
(
ℓk+1

n

) 2
k2+3k−2

=

(
2

k2 +3k−2
· ((k+1)

2k+2
k2 + k+4

−1)
)

logn =
2

k2 + k+4
logn

=
(logℓ)2

logn
2

k2 + k+4

(
logn
logℓ

)2

=
(logℓ)2

logn
2

k2 + k+4

(
k2 + k+4

2k+2

)2

=
1
2
(logℓ)2

logn
k2 + k+4
(k+1)2 ≥

15
32

(logℓ)2

logn
.

The function k2+k+4
(k+1)2 has derivative k−7

(k+1)3 and is minimized exactly at k = 7, where it has value 15
16 . Conse-

quently, the value C = 15
32 is the best possible.

A.3 Mechanical Proofs for Section 5

Proof of Lemma 5.2. First, we handle the case where ⌈logℓ⌉<
⌊

2 log(n/4)
log16ℓ

⌋
. Then d = ⌈logℓ⌉≤

⌊
2 log(n/4)

log16ℓ

⌋
−

1, and α = 2. Note that ℓ
2d−1 ≥ 1 since 2d−1 ≤ 2⌈ℓ⌉−1 ≤ 2ℓ/2 = ℓ.

d

∏
i=2

bi =

⌈
ℓ

2d−1

⌉
2d−2 ≥ ℓ

2
=

ℓ

α

d

∏
i=2

bi =

⌈
ℓ

2d−1

⌉
2d−2 ≤ 2

ℓ

2
≤ 4ℓ

α
.
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Since bd =
⌈

ℓ
2d−1

⌉
=
⌈

2ℓ
2⌈logℓ⌉

⌉
≤ 2,

∏
i∈[d]

wi = (16ℓ)
d

∏
i=2

d

∏
j=i

b j ≤ (16ℓ)
d

∏
i=2

2d−i+1 = (16ℓ)2d(d−1)/2

≤ (16ℓ)(2⌈logℓ⌉)(d−1)/2 ≤ (16ℓ)(2ℓ)(d−1)/2

≤ (16ℓ)(2ℓ)(
⌊

2 log(n/4)
log16ℓ

⌋
−2)/2

≤ (16ℓ)(2ℓ)
log(n/4)
log16ℓ −1

≤ (16ℓ)
log(n/4)
log16ℓ =

n
4
≤ n .

Second, we consider the case where d =
⌊

2 log(n/4)
log(16ℓ)

⌋
. Because n≥ 64ℓ, d ≥ 2, and so

d =

⌊
2

log(n/4)
log16ℓ

⌋
≥ 2

3
·2log(n/4)

log16ℓ
=

log(n/4)
3
4 log16ℓ

≥ log(n/4)
log4ℓ

.

The second inequality used that 3
4(4+ logℓ)≤ (2+ logℓ) for ℓ≥ 4. Consequently,

α =

(
(4ℓ)d

n/4

) 2
d(d−1)

≥

(4ℓ)
log(n/4)

log4ℓ

n/4

 2
d(d−1)

=

(
n/4
n/4

) 2
d(d−1)

= 1 .

We now prove Eq. 15. Because ∏
d−1
i=2 bi ≥ αd−2,

d

∏
i=2

bi =

⌈
ℓ

αd−1

⌉ d−1

∏
i=2

bi ≥
ℓ

α ∏
d−1
i=2 bi

·
d−1

∏
i=2

bi =
ℓ

α
.

For Eq. 17, we observe that

d ≤ 2
log(n/4)
log(16ℓ)

=⇒ 16ℓ≤ (n/4)2/d =⇒ ℓ≥ α
d−1 =

(4ℓ)2

(n/4)2/d ,

and thus ℓ/αd−1 ≥ 1, so bd =
⌈
ℓ/αd−1

⌉
≤ 2ℓ/αd−1. Then since ∏

d−1
i=2 bi ≤ 2αd−2,

d

∏
i=2

bi ≤
2ℓ

αd−1

d

∏
i=2

bi ≤
4ℓ

α ∏
d−1
i=2 bi

·
d−1

∏
i=2

bi ≤
4ℓ
α

.

Finally, we prove Eq. 17. As noted above,

bd ≤
2ℓ

αd−1 ≤
4ℓ

α ∏
d−1
i=2 b j

.
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Applying this fact to bound the left hand side of Eq. 17 gives:

∏
i∈[d]

wi = (16ℓ)
d

∏
i=2

d

∏
j=i

b j = 16ℓ(bd)
d

d−1

∏
i=2

d−1

∏
j=i

b j

≤ 16ℓ

(
4ℓ

α ∏
d−1
i=2 b j

)d−1 d−1

∏
i=2

d−1

∏
j=i

b j

≤ 4 · (4ℓ)d

αd−1
1

∏
d−1
i=2 ∏

i−1
j=2 b j

≤ 4 · (4ℓ)d

αd−1
1

α(d−1)(d−2)/2 since
d−1

∏
j=2

b j ≥ α
d−2 and b2 ≥ b3 ≥ . . .≥ bd−1

=
4 · (4ℓ)d

αd(d−1)/2 =
4 · (4ℓ)d

(4ℓ)d

n/4

= n .

Proof of Lemma 5.5. Listing 3 only stores two types of data: for each i ∈ [d], the vectors Li ∈ [wi]
bi , and the

vectors xi ∈ {0,1}bi . These can be stored using bi logwi and bi, bits respectively, for a total of:

∑
i∈[d]

bi log(2wi)≤ b1 log(2w1)+
d

∑
i=2

bi log(2wi)

≤ b1 log(32ℓ)+
d

∑
i=2

bi log(2
d

∏
j=i

bi)≤
d

∑
i=1

bi log(32ℓ) ,

since by Eq. 16, ∏
d
j=i bi ≤ 4ℓ.

We now observe that bd ≤ ⌈α⌉. If d = ⌈logℓ⌉, then α = b2 = . . . = bd−1 = 2 and bd =
⌈
ℓ/αd−1

⌉
≤ 2.

On the other hand, if d =
⌊

2 log(n/4)
log(16ℓ)

⌋
, then α = (4ℓ)2/(d−1)

(n/4)2/(d(d−1)) . We have:

(4ℓ)d+1 = (4ℓ)
⌊

2 log(n/4)
log(16ℓ)

⌋
+1 ≥ (4ℓ)2 log(n/4)

log(16ℓ) = (n/4)2 ,

which implies

α =
(4ℓ)2/(d−1)

(n/4)2/(d(d−1)) ≥
(4ℓ)2/(d−1)

(4ℓ)(d+1)/(d(d−1)) = (4ℓ)(2−
d+1

d )· 1
d−1 = (4ℓ)

1
d .

Consequently,

bd =

⌈
ℓ

αd−1

⌉
=

⌈
1
4

4ℓ
αd−1

⌉
≤
⌈

1
4
(4ℓ)1/d

⌉
≤ (4ℓ)1/d ≤ α .

With the bound on bd , and the fact that α ≥ 1 in both cases, and that d ≤ ⌈logℓ⌉ we obtain:

∑
i∈[d]

bi ≤min(ℓ+1,⌈8α⌉+ ⌈3log1/δ⌉)+(d−1)⌈α⌉

≤min(ℓ,⌈3log1/δ⌉)+(7+d)2α

≤min(ℓ,⌈3log1/δ⌉)+32logℓ

⌈
(4ℓ)2/(d−1)

(n/4)2/(d(d−1))

⌉
.
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Multiplying this last quantity by log(32ℓ) gives a space bound.
To obtain a much weaker, but somewhat more comprehensible upper bound on α , when d =

⌊
2 log(n/4)

log(16ℓ)

⌋
,

we note that:

max
λ∈N∩[2,∞)

log
(4ℓ)2/(λ−1)

(n/4)2/(λ (λ−1)) ≤ log max
λ∈R∩[2,∞)

(
2

λ −1
log(4ℓ)− 2

λ (λ −1)
log(n/4)

)
≤ log

(
2log(4ℓ) max

λ∈R∩[2,∞)

(
1

λ −1
− 1

λ (λ −1)
log(n/4)
log(4ℓ)

))
.

Let γ = log(n/4)
log(4ℓ) ; this is ≥ 1. Let f (x) = 1

x−1(1−
γ

x ). We will now prove that maxx≥2 f (x)≤ 1
2γ

. We note that
when x = 2, we have:

f (2) = 1− γ

2
≤ 1

2γ
.

Checking the other endpoint, we have:

lim
x→∞

1
x−1

(1− γ

x
) = 0 .

Since f (x) is differentiable on [2,∞), if it has a maximum other than at the endpoints, then it will occur
when d

dx f (x) = 0. Solving this equation, we obtain:

d
dx

f (x) =− 1

(x−1)2 +
γ (2x−1)

(x(x−1))2 =− 1

(x−1)2

[
1− γ (2x−1)

x2

]
= 0 ,

which is true iff x2 = γ(2x−1). The solutions to the quadratic equation are

x = γ−
√

γ (γ−1) and x = γ +
√

γ (γ−1) .

Since γ ≥ 1, the − branch has x ≤ 1, which is not in [2,∞). The + branch is only in [2,∞) if γ ≥ 4
3 . The

value of f (x) in this case is:

f (γ +
√

γ (γ−1)) =
1

γ +
√

γ (γ−1)−1

(
1− γ

γ +
√

γ (γ−1)

)

=

√
γ(γ−1)

2γ−1+2
√

γ(γ−1)

≤ 1
4
√

γ(γ−1)
(since

√
γ(γ−1)≤ 2γ−1 for all γ ≥ 1)

≤ 1
2γ

. (since γ ≤ 2
√

γ(γ−1) for all γ ≥ 4
3

)

Thus, if f (x) does have a maximum in [2,∞), it is ≤ 1
2γ

. We conclude that f (x) ≤ 1
2γ

in all cases. This
proves:

logα ≤max
λ∈N

log
(4ℓ)2/(λ−1)

(n/4)2/(λ (λ−1)) ≤ log

2log(4ℓ)
1

2 log(n/4)
log(4ℓ)

≤ log
log(4ℓ)2

log(n/4)
.
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A.4 Mechanical Proofs for Section 6

Proof of Theorem 6.9. By Lemma 6.7, we have:

z≥min

(
ℓ

36log 2|S|
ℓ

,
ℓ

17280log 2|S|
ℓ

· log(1/2δ )

log(64|S|) log 2|S|
ℓ

)
. (30)

By Lemma 6.8, |S| ≤min(n,2z+1)≤min(n,4z). We will apply this inequality to each branch of the minimum
in Eq. 30. First, say that the left part of the minimum is larger than the right. Then z ≥ ℓ/(36log 2|S|

ℓ ).
Applying |S| ≤ n and |S| ≤ 4z, this implies:

z≥ ℓ

36log 2n
ℓ

, and

z≥ ℓ

36log 2·4z

ℓ

≥ ℓ

36 ·3z
=⇒ z≥

√
ℓ

108
.

Thus:

z≥max

(
ℓ

36log 2n
ℓ

,

√
ℓ

108

)
. (31)

Next, say that the right side of the minimum in Eq. 30 is larger. Then applying |S| ≤ n and |S| ≤ 4z to
that side, we get:

z≥ ℓ log(1/2δ )

17280(log 2n
ℓ )

2 log(64n)
, and

z≥ ℓ log(1/2δ )

17280(log 2·4z

ℓ )2 log(64 ·4z)
≥ ℓ log(1/2δ )

17280 ·32 ·8z3 =⇒ z≥
(
ℓ log(1/2δ )

1244160

)1/4

.

Thus:

z≥max

(
ℓ log(1/2δ )

17280(log 2n
ℓ )

2 log(64n)
,

(
ℓ log(1/2δ )

1244160

)1/4
)

. (32)

The minimum of the lower bounds from Eqs. 31 and 32 holds in all cases, so:

z≥min

(
max

(
ℓ

36log 2n
ℓ

,

√
ℓ

108

)
,max

(
ℓ log(1/2δ )

17280(log 2n
ℓ )

2 log(64n)
,

(
ℓ log(1/2δ )

1244160

)1/4
))

.

Proof of Theorem 6.11. The lower bound from Theorem 6.9 for MIF(n, t) with error δ = 1/3, showing con-
stants, is:

max

(
t log(3/2)

17280(log 2n
t )

2 log(64n)
,

(
t log(3/2)
1244160

)1/4
)

. (33)

If the space used by an algorithm, z, satisfies z ≥ (ℓ− 1)/2, then we tautologically have a lower bound of
(ℓ−1)/2. Otherwise, we have 2z+2 ≤ ℓ. Applying Theorem 6.10 gives, for the left branch of the max in
Eq. 33, with t =

⌊
ℓ

2z+2

⌋
≥ 1

8z :

z≥
⌊

ℓ

2z+2

⌋
log(3/2)

17280(log 2n
t )

2 log(64n)
≥ ℓ

8z
1/2

17280(log(2n))2 log(64n)
,
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which implies

z≥

√
ℓ

276480(log(2n))2 log(64n)
≥

√
ℓ

7741440(logn)3 .

For the right branch of Eq. 33, we obtain:

z≥
(⌊

ℓ

2z+2

⌋
log(3/2)
1244160

)1/4

≥
(

ℓ

8z
1

2 ·1244160

)1/4

,

which implies:

z5/4 ≥
(

ℓ

19906560

)1/4

=⇒ z≥
(

ℓ

19906560

)1/5

.

Combining the two lower bounds, gives:

z≥max

(√
ℓ

7741440(logn)3 ,

(
ℓ

19906560

)1/5
)

= Ω

(√
ℓ

(logn)3 + ℓ1/5

)
. (34)

This lower bound is everywhere smaller than (ℓ− 1)/2, so it is compatible with the case in which z ≥
(ℓ−1)/2.

Taking the maximum of Eq. 34 and the known random oracle lower bound for MIF(n, ℓ) algorithms in
the static setting, Theorem 3.5, gives:

z = Ω

(
ℓ2

n
+

√
ℓ

(logn)3 + ℓ1/5

)
.
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